MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcimdv Structured version   Unicode version

Theorem rspcimdv 3045
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1  |-  ( ph  ->  A  e.  B )
rspcimdv.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
rspcimdv  |-  ( ph  ->  ( A. x  e.  B  ps  ->  ch ) )
Distinct variable groups:    x, A    x, B    ph, x    ch, x
Allowed substitution hint:    ps( x)

Proof of Theorem rspcimdv
StepHypRef Expression
1 df-ral 2702 . 2  |-  ( A. x  e.  B  ps  <->  A. x ( x  e.  B  ->  ps )
)
2 rspcimdv.1 . . 3  |-  ( ph  ->  A  e.  B )
3 simpr 448 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
43eleq1d 2501 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
x  e.  B  <->  A  e.  B ) )
54biimprd 215 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( A  e.  B  ->  x  e.  B ) )
6 rspcimdv.2 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( ps  ->  ch ) )
75, 6imim12d 70 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  B  ->  ps )  ->  ( A  e.  B  ->  ch ) ) )
82, 7spcimdv 3025 . . 3  |-  ( ph  ->  ( A. x ( x  e.  B  ->  ps )  ->  ( A  e.  B  ->  ch ) ) )
92, 8mpid 39 . 2  |-  ( ph  ->  ( A. x ( x  e.  B  ->  ps )  ->  ch )
)
101, 9syl5bi 209 1  |-  ( ph  ->  ( A. x  e.  B  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725   A.wral 2697
This theorem is referenced by:  rspcimedv  3046  rspcdv  3047  mreexd  13859  mreexexlemd  13861  catcocl  13902  catass  13903  moni  13954  subccocl  14034  funcco  14060  fullfo  14101  fthf1  14106  nati  14144  acsfiindd  14595  sizeusglecusglem1  21485  lmxrge0  24329  funressnfv  27959  cshwssizelem1a  28242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950
  Copyright terms: Public domain W3C validator