MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcimedv Unicode version

Theorem rspcimedv 2886
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1  |-  ( ph  ->  A  e.  B )
rspcimedv.2  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
Assertion
Ref Expression
rspcimedv  |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps )
)
Distinct variable groups:    x, A    x, B    ph, x    ch, x
Allowed substitution hint:    ps( x)

Proof of Theorem rspcimedv
StepHypRef Expression
1 rspcimdv.1 . . . 4  |-  ( ph  ->  A  e.  B )
2 rspcimedv.2 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
32con3d 125 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( -.  ps  ->  -.  ch )
)
41, 3rspcimdv 2885 . . 3  |-  ( ph  ->  ( A. x  e.  B  -.  ps  ->  -. 
ch ) )
54con2d 107 . 2  |-  ( ph  ->  ( ch  ->  -.  A. x  e.  B  -.  ps ) )
6 dfrex2 2556 . 2  |-  ( E. x  e.  B  ps  <->  -. 
A. x  e.  B  -.  ps )
75, 6syl6ibr 218 1  |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544
This theorem is referenced by:  rspcedv  2888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790
  Copyright terms: Public domain W3C validator