Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcimedv Structured version   Unicode version

Theorem rspcimedv 3056
 Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1
rspcimedv.2
Assertion
Ref Expression
rspcimedv
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem rspcimedv
StepHypRef Expression
1 rspcimdv.1 . . . 4
2 rspcimedv.2 . . . . 5
32con3d 128 . . . 4
41, 3rspcimdv 3055 . . 3
54con2d 110 . 2
6 dfrex2 2720 . 2
75, 6syl6ibr 220 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 360   wceq 1653   wcel 1726  wral 2707  wrex 2708 This theorem is referenced by:  rspcedv  3058  fargshiftfo  21627  usgra2pthlem1  28336  el2wlkonot  28389  el2spthonot  28390  el2wlkonotot0  28392  usg2spot2nb  28516 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-v 2960
 Copyright terms: Public domain W3C validator