MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspesbca Unicode version

Theorem rspesbca 3105
Description: Existence form of rspsbca 3104. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspesbca  |-  ( ( A  e.  B  /\  [. A  /  x ]. ph )  ->  E. x  e.  B  ph )
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rspesbca
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3028 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
21rspcev 2918 . 2  |-  ( ( A  e.  B  /\  [. A  /  x ]. ph )  ->  E. y  e.  B  [ y  /  x ] ph )
3 cbvrexsv 2810 . 2  |-  ( E. x  e.  B  ph  <->  E. y  e.  B  [
y  /  x ] ph )
42, 3sylibr 203 1  |-  ( ( A  e.  B  /\  [. A  /  x ]. ph )  ->  E. x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   [wsb 1639    e. wcel 1701   E.wrex 2578   [.wsbc 3025
This theorem is referenced by:  spesbc  3106  indexfi  7208  indexdom  25562
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ral 2582  df-rex 2583  df-v 2824  df-sbc 3026
  Copyright terms: Public domain W3C validator