MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspsbca Unicode version

Theorem rspsbca 3208
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
Assertion
Ref Expression
rspsbca  |-  ( ( A  e.  B  /\  A. x  e.  B  ph )  ->  [. A  /  x ]. ph )
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rspsbca
StepHypRef Expression
1 rspsbc 3207 . 2  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  [. A  /  x ]. ph ) )
21imp 419 1  |-  ( ( A  e.  B  /\  A. x  e.  B  ph )  ->  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1721   A.wral 2674   [.wsbc 3129
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ral 2679  df-v 2926  df-sbc 3130
  Copyright terms: Public domain W3C validator