Users' Mathboxes Mathbox for Drahflow < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtrclreclem.min Structured version   Unicode version

Theorem rtrclreclem.min 25139
Description: The reflexive, transitive closure of  R is the smallest reflexive, transitive relation which contains  R and the identity. (Contributed by Drahflow, 12-Nov-2015.)
Hypotheses
Ref Expression
rtrclreclem.1  |-  ( ph  ->  Rel  R )
rtrclreclem.2  |-  ( ph  ->  R  e.  _V )
Assertion
Ref Expression
rtrclreclem.min  |-  ( ph  ->  A. s ( ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( t *rec `  R )  C_  s
) )
Distinct variable group:    ph, s
Allowed substitution hint:    R( s)

Proof of Theorem rtrclreclem.min
Dummy variables  n  i  m  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2436 . . . . 5  |-  ( ph  ->  ( r  e.  _V  |->  U_ n  e.  NN0  (
r ^ r n ) )  =  ( r  e.  _V  |->  U_ n  e.  NN0  ( r ^ r n ) ) )
2 oveq1 6080 . . . . . . 7  |-  ( r  =  R  ->  (
r ^ r n )  =  ( R ^ r n ) )
32iuneq2d 4110 . . . . . 6  |-  ( r  =  R  ->  U_ n  e.  NN0  ( r ^
r n )  = 
U_ n  e.  NN0  ( R ^ r n ) )
43adantl 453 . . . . 5  |-  ( (
ph  /\  r  =  R )  ->  U_ n  e.  NN0  ( r ^
r n )  = 
U_ n  e.  NN0  ( R ^ r n ) )
5 rtrclreclem.2 . . . . 5  |-  ( ph  ->  R  e.  _V )
6 nn0ex 10219 . . . . . . 7  |-  NN0  e.  _V
7 ovex 6098 . . . . . . 7  |-  ( R ^ r n )  e.  _V
86, 7iunex 5983 . . . . . 6  |-  U_ n  e.  NN0  ( R ^
r n )  e. 
_V
98a1i 11 . . . . 5  |-  ( ph  ->  U_ n  e.  NN0  ( R ^ r n )  e.  _V )
101, 4, 5, 9fvmptd 5802 . . . 4  |-  ( ph  ->  ( ( r  e. 
_V  |->  U_ n  e.  NN0  ( r ^ r n ) ) `  R )  =  U_ n  e.  NN0  ( R ^ r n ) )
11 eleq1 2495 . . . . . . . . . . . . . . . . 17  |-  ( i  =  0  ->  (
i  e.  NN0  <->  0  e.  NN0 ) )
1211anbi1d 686 . . . . . . . . . . . . . . . 16  |-  ( i  =  0  ->  (
( i  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  <-> 
( 0  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) ) ) )
13 oveq2 6081 . . . . . . . . . . . . . . . . 17  |-  ( i  =  0  ->  ( R ^ r i )  =  ( R ^
r 0 ) )
1413sseq1d 3367 . . . . . . . . . . . . . . . 16  |-  ( i  =  0  ->  (
( R ^ r i )  C_  s  <->  ( R ^ r 0 )  C_  s )
)
1512, 14imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( i  =  0  ->  (
( ( i  e. 
NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r i )  C_  s )  <->  ( (
0  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ( R ^ r 0 ) 
C_  s ) ) )
16 eleq1 2495 . . . . . . . . . . . . . . . . 17  |-  ( i  =  m  ->  (
i  e.  NN0  <->  m  e.  NN0 ) )
1716anbi1d 686 . . . . . . . . . . . . . . . 16  |-  ( i  =  m  ->  (
( i  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  <-> 
( m  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) ) ) )
18 oveq2 6081 . . . . . . . . . . . . . . . . 17  |-  ( i  =  m  ->  ( R ^ r i )  =  ( R ^
r m ) )
1918sseq1d 3367 . . . . . . . . . . . . . . . 16  |-  ( i  =  m  ->  (
( R ^ r i )  C_  s  <->  ( R ^ r m )  C_  s )
)
2017, 19imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( i  =  m  ->  (
( ( i  e. 
NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r i )  C_  s )  <->  ( (
m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ( R ^ r m ) 
C_  s ) ) )
21 eleq1 2495 . . . . . . . . . . . . . . . . 17  |-  ( i  =  ( m  + 
1 )  ->  (
i  e.  NN0  <->  ( m  +  1 )  e. 
NN0 ) )
2221anbi1d 686 . . . . . . . . . . . . . . . 16  |-  ( i  =  ( m  + 
1 )  ->  (
( i  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  <-> 
( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) ) ) )
23 oveq2 6081 . . . . . . . . . . . . . . . . 17  |-  ( i  =  ( m  + 
1 )  ->  ( R ^ r i )  =  ( R ^
r ( m  + 
1 ) ) )
2423sseq1d 3367 . . . . . . . . . . . . . . . 16  |-  ( i  =  ( m  + 
1 )  ->  (
( R ^ r i )  C_  s  <->  ( R ^ r ( m  +  1 ) )  C_  s )
)
2522, 24imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( i  =  ( m  + 
1 )  ->  (
( ( i  e. 
NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r i )  C_  s )  <->  ( (
( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ( R ^ r ( m  +  1 ) ) 
C_  s ) ) )
26 eleq1 2495 . . . . . . . . . . . . . . . . 17  |-  ( i  =  n  ->  (
i  e.  NN0  <->  n  e.  NN0 ) )
2726anbi1d 686 . . . . . . . . . . . . . . . 16  |-  ( i  =  n  ->  (
( i  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  <-> 
( n  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) ) ) )
28 oveq2 6081 . . . . . . . . . . . . . . . . 17  |-  ( i  =  n  ->  ( R ^ r i )  =  ( R ^
r n ) )
2928sseq1d 3367 . . . . . . . . . . . . . . . 16  |-  ( i  =  n  ->  (
( R ^ r i )  C_  s  <->  ( R ^ r n )  C_  s )
)
3027, 29imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( i  =  n  ->  (
( ( i  e. 
NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r i )  C_  s )  <->  ( (
n  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ( R ^ r n ) 
C_  s ) ) )
31 simprl 733 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ph )
32 rtrclreclem.1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Rel  R )
3332, 5relexp0 25121 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( R ^ r 0 )  =  (  _I  |`  U. U. R
) )
3431, 33syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ( R ^ r 0 )  =  (  _I  |`  U. U. R ) )
35 relfld 5387 . . . . . . . . . . . . . . . . . 18  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
3631, 32, 353syl 19 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
37 simprrr 742 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) )  ->  (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s )
3837adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s )
39 reseq2 5133 . . . . . . . . . . . . . . . . . . 19  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  (  _I  |` 
U. U. R )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
4039sseq1d 3367 . . . . . . . . . . . . . . . . . 18  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( (  _I  |`  U. U. R
)  C_  s  <->  (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s ) )
4138, 40syl5ibr 213 . . . . . . . . . . . . . . . . 17  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( (
0  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  (  _I  |`  U. U. R
)  C_  s )
)
4236, 41mpcom 34 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  (  _I  |`  U. U. R
)  C_  s )
4334, 42eqsstrd 3374 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ( R ^ r 0 ) 
C_  s )
44 simprrr 742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) )  ->  m  e.  NN0 )
4544adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) )  ->  m  e.  NN0 )
4645adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  ( (
s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) )  ->  m  e.  NN0 )
4746adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) )  ->  m  e.  NN0 )
48 simprl 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) )  ->  ph )
49 simprrl 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) )  -> 
( s  o.  s
)  C_  s )
50 simprrl 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  ( (
s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) )  ->  R  C_  s )
5150adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) )  ->  R  C_  s )
52 simprrl 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) )  ->  (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s )
5352adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  ( (
s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) )  ->  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s )
5453adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) )  -> 
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
)
5549, 51, 54jca32 522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) )  -> 
( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) )
5647, 48, 55jca32 522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) )  -> 
( m  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) ) )
57 simprrl 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) )  ->  ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s ) )
5857adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) )  ->  ( (
m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ( R ^ r m ) 
C_  s ) )
5958adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  ( (
s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) )  ->  (
( m  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s ) )
6059adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) )  -> 
( ( m  e. 
NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s ) )
6156, 60mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) )  -> 
( R ^ r m )  C_  s
)
6247adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  m  e.  NN0 )
63 simprrl 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  ph )
6463, 32syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  Rel  R )
6563, 5syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  R  e.  _V )
6664, 65relexpsucr 25122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  ( m  e. 
NN0  ->  ( R ^
r ( m  + 
1 ) )  =  ( ( R ^
r m )  o.  R ) ) )
6762, 66mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  ( R ^
r ( m  + 
1 ) )  =  ( ( R ^
r m )  o.  R ) )
6851adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  R  C_  s
)
69 coss2 5021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( R 
C_  s  ->  (
( R ^ r m )  o.  R
)  C_  ( ( R ^ r m )  o.  s ) )
7068, 69syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  ( ( R ^ r m )  o.  R )  C_  ( ( R ^
r m )  o.  s ) )
71 coss1 5020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( R ^ r m )  C_  s  ->  ( ( R ^ r m )  o.  s
)  C_  ( s  o.  s ) )
7271, 49sylan9ss 3353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  ( ( R ^ r m )  o.  s )  C_  s )
7370, 72sstrd 3350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  ( ( R ^ r m )  o.  R )  C_  s )
7467, 73eqsstrd 3374 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( R ^ r m )  C_  s  /\  ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) ) )  ->  ( R ^
r ( m  + 
1 ) )  C_  s )
7561, 74mpancom 651 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) ) )  -> 
( R ^ r ( m  +  1 ) )  C_  s
)
7675expcom 425 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  ( (
s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (
(  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) ) )  ->  (
( m  +  1 )  e.  NN0  ->  ( R ^ r ( m  +  1 ) )  C_  s )
)
7776expcom 425 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) ) )  ->  ( ph  ->  ( ( m  + 
1 )  e.  NN0  ->  ( R ^ r ( m  +  1 ) )  C_  s
) ) )
7877expcom 425 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  C_  s  /\  ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) )  ->  ( ( s  o.  s )  C_  s  ->  ( ph  ->  ( ( m  +  1 )  e.  NN0  ->  ( R ^ r ( m  +  1 ) )  C_  s )
) ) )
7978anassrs 630 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
)  /\  ( (
( m  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) )  -> 
( ( s  o.  s )  C_  s  ->  ( ph  ->  (
( m  +  1 )  e.  NN0  ->  ( R ^ r ( m  +  1 ) )  C_  s )
) ) )
8079impcom 420 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( s  o.  s
)  C_  s  /\  ( ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
)  /\  ( (
( m  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) )  ->  ( ph  ->  ( ( m  +  1 )  e.  NN0  ->  ( R ^ r ( m  +  1 ) )  C_  s )
) )
8180anassrs 630 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) )  /\  (
( ( m  e. 
NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) )  -> 
( ph  ->  ( ( m  +  1 )  e.  NN0  ->  ( R ^ r ( m  +  1 ) ) 
C_  s ) ) )
8281impcom 420 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) )  /\  (
( ( m  e. 
NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) )  ->  ( ( m  +  1 )  e. 
NN0  ->  ( R ^
r ( m  + 
1 ) )  C_  s ) )
8382anassrs 630 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) )  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) )  -> 
( ( m  + 
1 )  e.  NN0  ->  ( R ^ r ( m  +  1 ) )  C_  s
) )
8483impcom 420 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( m  +  1 )  e.  NN0  /\  ( ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) )  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 ) ) )  ->  ( R ^
r ( m  + 
1 ) )  C_  s )
8584anassrs 630 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  /\  ( ( ( m  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ( R ^ r m ) 
C_  s )  /\  m  e.  NN0 ) )  ->  ( R ^
r ( m  + 
1 ) )  C_  s )
8685expcom 425 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( m  e. 
NN0  /\  ( ph  /\  ( ( s  o.  s )  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  /\  m  e.  NN0 )  ->  (
( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r ( m  + 
1 ) )  C_  s ) )
8786expcom 425 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN0  ->  ( ( ( m  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r m )  C_  s )  ->  (
( ( m  + 
1 )  e.  NN0  /\  ( ph  /\  (
( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) ) ) )  ->  ( R ^
r ( m  + 
1 ) )  C_  s ) ) )
8815, 20, 25, 30, 43, 87nn0ind 10358 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  ->  ( ( n  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ( R ^ r n ) 
C_  s ) )
8988anabsi5 791 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN0  /\  ( ph  /\  ( ( s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) ) )  ->  ( R ^ r n ) 
C_  s )
9089expcom 425 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) )  ->  ( n  e.  NN0  ->  ( R ^ r n ) 
C_  s ) )
9190ralrimiv 2780 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) )  ->  A. n  e.  NN0  ( R ^
r n )  C_  s )
92 iunss 4124 . . . . . . . . . . 11  |-  ( U_ n  e.  NN0  ( R ^ r n ) 
C_  s  <->  A. n  e.  NN0  ( R ^
r n )  C_  s )
9391, 92sylibr 204 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
s  o.  s ) 
C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom  R  u.  ran  R ) ) 
C_  s ) ) )  ->  U_ n  e. 
NN0  ( R ^
r n )  C_  s )
9493expcom 425 . . . . . . . . 9  |-  ( ( ( s  o.  s
)  C_  s  /\  ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
) )  ->  ( ph  ->  U_ n  e.  NN0  ( R ^ r n )  C_  s )
)
9594expcom 425 . . . . . . . 8  |-  ( ( R  C_  s  /\  (  _I  |`  ( dom 
R  u.  ran  R
) )  C_  s
)  ->  ( (
s  o.  s ) 
C_  s  ->  ( ph  ->  U_ n  e.  NN0  ( R ^ r n )  C_  s )
) )
9695expcom 425 . . . . . . 7  |-  ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  ->  ( R  C_  s  ->  ( ( s  o.  s
)  C_  s  ->  (
ph  ->  U_ n  e.  NN0  ( R ^ r n )  C_  s )
) ) )
97963imp1 1166 . . . . . 6  |-  ( ( ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  /\  ph )  ->  U_ n  e.  NN0  ( R ^
r n )  C_  s )
9897expcom 425 . . . . 5  |-  ( ph  ->  ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  U_ n  e.  NN0  ( R ^ r n )  C_  s )
)
99 sseq1 3361 . . . . . 6  |-  ( ( ( r  e.  _V  |->  U_ n  e.  NN0  (
r ^ r n ) ) `  R
)  =  U_ n  e.  NN0  ( R ^
r n )  -> 
( ( ( r  e.  _V  |->  U_ n  e.  NN0  ( r ^
r n ) ) `
 R )  C_  s 
<-> 
U_ n  e.  NN0  ( R ^ r n )  C_  s )
)
10099imbi2d 308 . . . . 5  |-  ( ( ( r  e.  _V  |->  U_ n  e.  NN0  (
r ^ r n ) ) `  R
)  =  U_ n  e.  NN0  ( R ^
r n )  -> 
( ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  (
s  o.  s ) 
C_  s )  -> 
( ( r  e. 
_V  |->  U_ n  e.  NN0  ( r ^ r n ) ) `  R )  C_  s
)  <->  ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  (
s  o.  s ) 
C_  s )  ->  U_ n  e.  NN0  ( R ^ r n )  C_  s )
) )
10198, 100syl5ibr 213 . . . 4  |-  ( ( ( r  e.  _V  |->  U_ n  e.  NN0  (
r ^ r n ) ) `  R
)  =  U_ n  e.  NN0  ( R ^
r n )  -> 
( ph  ->  ( ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( ( r  e. 
_V  |->  U_ n  e.  NN0  ( r ^ r n ) ) `  R )  C_  s
) ) )
10210, 101mpcom 34 . . 3  |-  ( ph  ->  ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( ( r  e. 
_V  |->  U_ n  e.  NN0  ( r ^ r n ) ) `  R )  C_  s
) )
103 df-rtrclrec 25134 . . . 4  |-  t
*rec  =  ( r  e.  _V  |->  U_ n  e.  NN0  ( r ^
r n ) )
104 fveq1 5719 . . . . . . 7  |-  ( t *rec  =  ( r  e.  _V  |->  U_ n  e.  NN0  ( r ^
r n ) )  ->  ( t *rec
`  R )  =  ( ( r  e. 
_V  |->  U_ n  e.  NN0  ( r ^ r n ) ) `  R ) )
105104sseq1d 3367 . . . . . 6  |-  ( t *rec  =  ( r  e.  _V  |->  U_ n  e.  NN0  ( r ^
r n ) )  ->  ( ( t *rec `  R )  C_  s  <->  ( ( r  e.  _V  |->  U_ n  e.  NN0  ( r ^
r n ) ) `
 R )  C_  s ) )
106105imbi2d 308 . . . . 5  |-  ( t *rec  =  ( r  e.  _V  |->  U_ n  e.  NN0  ( r ^
r n ) )  ->  ( ( ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( t *rec `  R )  C_  s
)  <->  ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  (
s  o.  s ) 
C_  s )  -> 
( ( r  e. 
_V  |->  U_ n  e.  NN0  ( r ^ r n ) ) `  R )  C_  s
) ) )
107106imbi2d 308 . . . 4  |-  ( t *rec  =  ( r  e.  _V  |->  U_ n  e.  NN0  ( r ^
r n ) )  ->  ( ( ph  ->  ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( t *rec `  R )  C_  s
) )  <->  ( ph  ->  ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( ( r  e. 
_V  |->  U_ n  e.  NN0  ( r ^ r n ) ) `  R )  C_  s
) ) ) )
108103, 107ax-mp 8 . . 3  |-  ( (
ph  ->  ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  (
s  o.  s ) 
C_  s )  -> 
( t *rec `  R )  C_  s
) )  <->  ( ph  ->  ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( ( r  e. 
_V  |->  U_ n  e.  NN0  ( r ^ r n ) ) `  R )  C_  s
) ) )
109102, 108mpbir 201 . 2  |-  ( ph  ->  ( ( (  _I  |`  ( dom  R  u.  ran  R ) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( t *rec `  R )  C_  s
) )
110109alrimiv 1641 1  |-  ( ph  ->  A. s ( ( (  _I  |`  ( dom  R  u.  ran  R
) )  C_  s  /\  R  C_  s  /\  ( s  o.  s
)  C_  s )  ->  ( t *rec `  R )  C_  s
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    u. cun 3310    C_ wss 3312   U.cuni 4007   U_ciun 4085    e. cmpt 4258    _I cid 4485   dom cdm 4870   ran crn 4871    |` cres 4872    o. ccom 4874   Rel wrel 4875   ` cfv 5446  (class class class)co 6073   0cc0 8982   1c1 8983    + caddc 8985   NN0cn0 10213   ^ rcrelexp 25119   t *reccrtrcl 25133
This theorem is referenced by:  dfrtrcl2  25140
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-seq 11316  df-relexp 25120  df-rtrclrec 25134
  Copyright terms: Public domain W3C validator