MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem3 Structured version   Unicode version

Theorem ruclem3 12824
Description: Lemma for ruc 12834. The constructed interval  [ X ,  Y ] always excludes  M. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruclem1.3  |-  ( ph  ->  A  e.  RR )
ruclem1.4  |-  ( ph  ->  B  e.  RR )
ruclem1.5  |-  ( ph  ->  M  e.  RR )
ruclem1.6  |-  X  =  ( 1st `  ( <. A ,  B >. D M ) )
ruclem1.7  |-  Y  =  ( 2nd `  ( <. A ,  B >. D M ) )
ruclem2.8  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ruclem3  |-  ( ph  ->  ( M  <  X  \/  Y  <  M ) )
Distinct variable groups:    x, m, y, A    B, m, x, y    m, F, x, y    m, M, x, y
Allowed substitution hints:    ph( x, y, m)    D( x, y, m)    X( x, y, m)    Y( x, y, m)

Proof of Theorem ruclem3
StepHypRef Expression
1 ruclem1.5 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2 ruclem1.3 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
3 ruclem1.4 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
42, 3readdcld 9107 . . . . . . . . . 10  |-  ( ph  ->  ( A  +  B
)  e.  RR )
54rehalfcld 10206 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B )  /  2
)  e.  RR )
61, 5lenltd 9211 . . . . . . . 8  |-  ( ph  ->  ( M  <_  (
( A  +  B
)  /  2 )  <->  -.  ( ( A  +  B )  /  2
)  <  M )
)
7 ruclem2.8 . . . . . . . . . . 11  |-  ( ph  ->  A  <  B )
8 avglt2 10198 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )
92, 3, 8syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( A  <  B  <->  ( ( A  +  B
)  /  2 )  <  B ) )
107, 9mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B )  /  2
)  <  B )
11 avglt1 10197 . . . . . . . . . . 11  |-  ( ( ( ( A  +  B )  /  2
)  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( ( A  +  B
)  /  2 )  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ) )
125, 3, 11syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  <  B  <->  ( ( A  +  B
)  /  2 )  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ) )
1310, 12mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B )  /  2
)  <  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) )
145, 3readdcld 9107 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  +  B
)  e.  RR )
1514rehalfcld 10206 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  RR )
16 lelttr 9157 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  ( ( A  +  B )  /  2
)  e.  RR  /\  ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
)  e.  RR )  ->  ( ( M  <_  ( ( A  +  B )  / 
2 )  /\  (
( A  +  B
)  /  2 )  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )  ->  M  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) ) )
171, 5, 15, 16syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( ( M  <_ 
( ( A  +  B )  /  2
)  /\  ( ( A  +  B )  /  2 )  < 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  ->  M  <  ( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) ) )
1813, 17mpan2d 656 . . . . . . . 8  |-  ( ph  ->  ( M  <_  (
( A  +  B
)  /  2 )  ->  M  <  (
( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ) )
196, 18sylbird 227 . . . . . . 7  |-  ( ph  ->  ( -.  ( ( A  +  B )  /  2 )  < 
M  ->  M  <  ( ( ( ( A  +  B )  / 
2 )  +  B
)  /  2 ) ) )
2019imp 419 . . . . . 6  |-  ( (
ph  /\  -.  (
( A  +  B
)  /  2 )  <  M )  ->  M  <  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
21 ruc.1 . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
22 ruc.2 . . . . . . . . 9  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
23 ruclem1.6 . . . . . . . . 9  |-  X  =  ( 1st `  ( <. A ,  B >. D M ) )
24 ruclem1.7 . . . . . . . . 9  |-  Y  =  ( 2nd `  ( <. A ,  B >. D M ) )
2521, 22, 2, 3, 1, 23, 24ruclem1 12822 . . . . . . . 8  |-  ( ph  ->  ( ( <. A ,  B >. D M )  e.  ( RR  X.  RR )  /\  X  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  A , 
( ( ( ( A  +  B )  /  2 )  +  B )  /  2
) )  /\  Y  =  if ( ( ( A  +  B )  /  2 )  < 
M ,  ( ( A  +  B )  /  2 ) ,  B ) ) )
2625simp2d 970 . . . . . . 7  |-  ( ph  ->  X  =  if ( ( ( A  +  B )  /  2
)  <  M ,  A ,  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) ) )
27 iffalse 3738 . . . . . . 7  |-  ( -.  ( ( A  +  B )  /  2
)  <  M  ->  if ( ( ( A  +  B )  / 
2 )  <  M ,  A ,  ( ( ( ( A  +  B )  /  2
)  +  B )  /  2 ) )  =  ( ( ( ( A  +  B
)  /  2 )  +  B )  / 
2 ) )
2826, 27sylan9eq 2487 . . . . . 6  |-  ( (
ph  /\  -.  (
( A  +  B
)  /  2 )  <  M )  ->  X  =  ( (
( ( A  +  B )  /  2
)  +  B )  /  2 ) )
2920, 28breqtrrd 4230 . . . . 5  |-  ( (
ph  /\  -.  (
( A  +  B
)  /  2 )  <  M )  ->  M  <  X )
3029ex 424 . . . 4  |-  ( ph  ->  ( -.  ( ( A  +  B )  /  2 )  < 
M  ->  M  <  X ) )
3130con1d 118 . . 3  |-  ( ph  ->  ( -.  M  < 
X  ->  ( ( A  +  B )  /  2 )  < 
M ) )
3225simp3d 971 . . . . . 6  |-  ( ph  ->  Y  =  if ( ( ( A  +  B )  /  2
)  <  M , 
( ( A  +  B )  /  2
) ,  B ) )
33 iftrue 3737 . . . . . 6  |-  ( ( ( A  +  B
)  /  2 )  <  M  ->  if ( ( ( A  +  B )  / 
2 )  <  M ,  ( ( A  +  B )  / 
2 ) ,  B
)  =  ( ( A  +  B )  /  2 ) )
3432, 33sylan9eq 2487 . . . . 5  |-  ( (
ph  /\  ( ( A  +  B )  /  2 )  < 
M )  ->  Y  =  ( ( A  +  B )  / 
2 ) )
35 simpr 448 . . . . 5  |-  ( (
ph  /\  ( ( A  +  B )  /  2 )  < 
M )  ->  (
( A  +  B
)  /  2 )  <  M )
3634, 35eqbrtrd 4224 . . . 4  |-  ( (
ph  /\  ( ( A  +  B )  /  2 )  < 
M )  ->  Y  <  M )
3736ex 424 . . 3  |-  ( ph  ->  ( ( ( A  +  B )  / 
2 )  <  M  ->  Y  <  M ) )
3831, 37syld 42 . 2  |-  ( ph  ->  ( -.  M  < 
X  ->  Y  <  M ) )
3938orrd 368 1  |-  ( ph  ->  ( M  <  X  \/  Y  <  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   [_csb 3243   ifcif 3731   <.cop 3809   class class class wbr 4204    X. cxp 4868   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1stc1st 6339   2ndc2nd 6340   RRcr 8981    + caddc 8985    < clt 9112    <_ cle 9113    / cdiv 9669   NNcn 9992   2c2 10041
This theorem is referenced by:  ruclem12  12832
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-2 10050
  Copyright terms: Public domain W3C validator