MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem7 Unicode version

Theorem ruclem7 12514
Description: Lemma for ruc 12521. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruc.4  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
ruc.5  |-  G  =  seq  0 ( D ,  C )
Assertion
Ref Expression
ruclem7  |-  ( (
ph  /\  N  e.  NN0 )  ->  ( G `  ( N  +  1 ) )  =  ( ( G `  N
) D ( F `
 ( N  + 
1 ) ) ) )
Distinct variable groups:    x, m, y, F    m, G, x, y    m, N, x, y
Allowed substitution hints:    ph( x, y, m)    C( x, y, m)    D( x, y, m)

Proof of Theorem ruclem7
StepHypRef Expression
1 simpr 447 . . . . 5  |-  ( (
ph  /\  N  e.  NN0 )  ->  N  e.  NN0 )
2 nn0uz 10262 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2373 . . . 4  |-  ( (
ph  /\  N  e.  NN0 )  ->  N  e.  ( ZZ>= `  0 )
)
4 seqp1 11061 . . . 4  |-  ( N  e.  ( ZZ>= `  0
)  ->  (  seq  0 ( D ,  C ) `  ( N  +  1 ) )  =  ( (  seq  0 ( D ,  C ) `  N ) D ( C `  ( N  +  1 ) ) ) )
53, 4syl 15 . . 3  |-  ( (
ph  /\  N  e.  NN0 )  ->  (  seq  0 ( D ,  C ) `  ( N  +  1 ) )  =  ( (  seq  0 ( D ,  C ) `  N ) D ( C `  ( N  +  1 ) ) ) )
6 ruc.5 . . . 4  |-  G  =  seq  0 ( D ,  C )
76fveq1i 5526 . . 3  |-  ( G `
 ( N  + 
1 ) )  =  (  seq  0 ( D ,  C ) `
 ( N  + 
1 ) )
86fveq1i 5526 . . . 4  |-  ( G `
 N )  =  (  seq  0 ( D ,  C ) `
 N )
98oveq1i 5868 . . 3  |-  ( ( G `  N ) D ( C `  ( N  +  1
) ) )  =  ( (  seq  0
( D ,  C
) `  N ) D ( C `  ( N  +  1
) ) )
105, 7, 93eqtr4g 2340 . 2  |-  ( (
ph  /\  N  e.  NN0 )  ->  ( G `  ( N  +  1 ) )  =  ( ( G `  N
) D ( C `
 ( N  + 
1 ) ) ) )
11 nn0p1nn 10003 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
1211adantl 452 . . . . . 6  |-  ( (
ph  /\  N  e.  NN0 )  ->  ( N  +  1 )  e.  NN )
1312nnne0d 9790 . . . . 5  |-  ( (
ph  /\  N  e.  NN0 )  ->  ( N  +  1 )  =/=  0 )
1413necomd 2529 . . . 4  |-  ( (
ph  /\  N  e.  NN0 )  ->  0  =/=  ( N  +  1
) )
15 ruc.4 . . . . . . 7  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
1615equncomi 3321 . . . . . 6  |-  C  =  ( F  u.  { <. 0 ,  <. 0 ,  1 >. >. } )
1716fveq1i 5526 . . . . 5  |-  ( C `
 ( N  + 
1 ) )  =  ( ( F  u.  {
<. 0 ,  <. 0 ,  1 >. >. } ) `  ( N  +  1 ) )
18 fvunsn 5712 . . . . 5  |-  ( 0  =/=  ( N  + 
1 )  ->  (
( F  u.  { <. 0 ,  <. 0 ,  1 >. >. } ) `
 ( N  + 
1 ) )  =  ( F `  ( N  +  1 ) ) )
1917, 18syl5eq 2327 . . . 4  |-  ( 0  =/=  ( N  + 
1 )  ->  ( C `  ( N  +  1 ) )  =  ( F `  ( N  +  1
) ) )
2014, 19syl 15 . . 3  |-  ( (
ph  /\  N  e.  NN0 )  ->  ( C `  ( N  +  1 ) )  =  ( F `  ( N  +  1 ) ) )
2120oveq2d 5874 . 2  |-  ( (
ph  /\  N  e.  NN0 )  ->  ( ( G `  N ) D ( C `  ( N  +  1
) ) )  =  ( ( G `  N ) D ( F `  ( N  +  1 ) ) ) )
2210, 21eqtrd 2315 1  |-  ( (
ph  /\  N  e.  NN0 )  ->  ( G `  ( N  +  1 ) )  =  ( ( G `  N
) D ( F `
 ( N  + 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   [_csb 3081    u. cun 3150   ifcif 3565   {csn 3640   <.cop 3643   class class class wbr 4023    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1stc1st 6120   2ndc2nd 6121   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZ>=cuz 10230    seq cseq 11046
This theorem is referenced by:  ruclem8  12515  ruclem9  12516  ruclem12  12519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047
  Copyright terms: Public domain W3C validator