MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1fv Unicode version

Theorem s1fv 11446
Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1fv  |-  ( A  e.  B  ->  ( <" A "> `  0 )  =  A )

Proof of Theorem s1fv
StepHypRef Expression
1 s1val 11438 . . 3  |-  ( A  e.  B  ->  <" A ">  =  { <. 0 ,  A >. } )
21fveq1d 5527 . 2  |-  ( A  e.  B  ->  ( <" A "> `  0 )  =  ( { <. 0 ,  A >. } `  0 ) )
3 0nn0 9980 . . 3  |-  0  e.  NN0
4 fvsng 5714 . . 3  |-  ( ( 0  e.  NN0  /\  A  e.  B )  ->  ( { <. 0 ,  A >. } `  0
)  =  A )
53, 4mpan 651 . 2  |-  ( A  e.  B  ->  ( { <. 0 ,  A >. } `  0 )  =  A )
62, 5eqtrd 2315 1  |-  ( A  e.  B  ->  ( <" A "> `  0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {csn 3640   <.cop 3643   ` cfv 5255   0cc0 8737   NN0cn0 9965   <"cs1 11405
This theorem is referenced by:  eqs1  11447  cats1un  11476  revs1  11483  cats1fvn  11508  s2fv0  11535  efgsval2  15042  efgs1  15044  efgsp1  15046  efgsfo  15048  pgpfaclem1  15316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-mulcl 8799  ax-i2m1 8805
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-n0 9966  df-s1 11411
  Copyright terms: Public domain W3C validator