MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2eqd Unicode version

Theorem s2eqd 11512
Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1  |-  ( ph  ->  A  =  N )
s2eqd.2  |-  ( ph  ->  B  =  O )
Assertion
Ref Expression
s2eqd  |-  ( ph  ->  <" A B ">  =  <" N O "> )

Proof of Theorem s2eqd
StepHypRef Expression
1 s2eqd.1 . . . 4  |-  ( ph  ->  A  =  N )
21s1eqd 11440 . . 3  |-  ( ph  ->  <" A ">  =  <" N "> )
3 s2eqd.2 . . . 4  |-  ( ph  ->  B  =  O )
43s1eqd 11440 . . 3  |-  ( ph  ->  <" B ">  =  <" O "> )
52, 4oveq12d 5876 . 2  |-  ( ph  ->  ( <" A "> concat  <" B "> )  =  ( <" N "> concat  <" O "> ) )
6 df-s2 11498 . 2  |-  <" A B ">  =  (
<" A "> concat  <" B "> )
7 df-s2 11498 . 2  |-  <" N O ">  =  (
<" N "> concat  <" O "> )
85, 6, 73eqtr4g 2340 1  |-  ( ph  ->  <" A B ">  =  <" N O "> )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623  (class class class)co 5858   concat cconcat 11404   <"cs1 11405   <"cs2 11491
This theorem is referenced by:  s3eqd  11513  efgi  15028  efgi0  15029  efgi1  15030  efgtf  15031  efgtval  15032  efgval2  15033  frgpuplem  15081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-s1 11411  df-s2 11498
  Copyright terms: Public domain W3C validator