MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s7eqd Structured version   Unicode version

Theorem s7eqd 11821
Description: Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1  |-  ( ph  ->  A  =  N )
s2eqd.2  |-  ( ph  ->  B  =  O )
s3eqd.3  |-  ( ph  ->  C  =  P )
s4eqd.4  |-  ( ph  ->  D  =  Q )
s5eqd.5  |-  ( ph  ->  E  =  R )
s6eqd.6  |-  ( ph  ->  F  =  S )
s7eqd.6  |-  ( ph  ->  G  =  T )
Assertion
Ref Expression
s7eqd  |-  ( ph  ->  <" A B C D E F G ">  =  <" N O P Q R S T "> )

Proof of Theorem s7eqd
StepHypRef Expression
1 s2eqd.1 . . . 4  |-  ( ph  ->  A  =  N )
2 s2eqd.2 . . . 4  |-  ( ph  ->  B  =  O )
3 s3eqd.3 . . . 4  |-  ( ph  ->  C  =  P )
4 s4eqd.4 . . . 4  |-  ( ph  ->  D  =  Q )
5 s5eqd.5 . . . 4  |-  ( ph  ->  E  =  R )
6 s6eqd.6 . . . 4  |-  ( ph  ->  F  =  S )
71, 2, 3, 4, 5, 6s6eqd 11820 . . 3  |-  ( ph  ->  <" A B C D E F ">  =  <" N O P Q R S "> )
8 s7eqd.6 . . . 4  |-  ( ph  ->  G  =  T )
98s1eqd 11744 . . 3  |-  ( ph  ->  <" G ">  =  <" T "> )
107, 9oveq12d 6091 . 2  |-  ( ph  ->  ( <" A B C D E F "> concat  <" G "> )  =  (
<" N O P Q R S "> concat 
<" T "> ) )
11 df-s7 11807 . 2  |-  <" A B C D E F G ">  =  ( <" A B C D E F "> concat  <" G "> )
12 df-s7 11807 . 2  |-  <" N O P Q R S T ">  =  ( <" N O P Q R S "> concat  <" T "> )
1310, 11, 123eqtr4g 2492 1  |-  ( ph  ->  <" A B C D E F G ">  =  <" N O P Q R S T "> )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652  (class class class)co 6073   concat cconcat 11708   <"cs1 11709   <"cs6 11799   <"cs7 11800
This theorem is referenced by:  s8eqd  11822
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-ov 6076  df-s1 11715  df-s2 11802  df-s3 11803  df-s4 11804  df-s5 11805  df-s6 11806  df-s7 11807
  Copyright terms: Public domain W3C validator