MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s7eqd Unicode version

Theorem s7eqd 11533
Description: Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1  |-  ( ph  ->  A  =  N )
s2eqd.2  |-  ( ph  ->  B  =  O )
s3eqd.3  |-  ( ph  ->  C  =  P )
s4eqd.4  |-  ( ph  ->  D  =  Q )
s5eqd.5  |-  ( ph  ->  E  =  R )
s6eqd.6  |-  ( ph  ->  F  =  S )
s7eqd.6  |-  ( ph  ->  G  =  T )
Assertion
Ref Expression
s7eqd  |-  ( ph  ->  <" A B C D E F G ">  =  <" N O P Q R S T "> )

Proof of Theorem s7eqd
StepHypRef Expression
1 s2eqd.1 . . . 4  |-  ( ph  ->  A  =  N )
2 s2eqd.2 . . . 4  |-  ( ph  ->  B  =  O )
3 s3eqd.3 . . . 4  |-  ( ph  ->  C  =  P )
4 s4eqd.4 . . . 4  |-  ( ph  ->  D  =  Q )
5 s5eqd.5 . . . 4  |-  ( ph  ->  E  =  R )
6 s6eqd.6 . . . 4  |-  ( ph  ->  F  =  S )
71, 2, 3, 4, 5, 6s6eqd 11532 . . 3  |-  ( ph  ->  <" A B C D E F ">  =  <" N O P Q R S "> )
8 s7eqd.6 . . . 4  |-  ( ph  ->  G  =  T )
98s1eqd 11456 . . 3  |-  ( ph  ->  <" G ">  =  <" T "> )
107, 9oveq12d 5892 . 2  |-  ( ph  ->  ( <" A B C D E F "> concat  <" G "> )  =  (
<" N O P Q R S "> concat 
<" T "> ) )
11 df-s7 11519 . 2  |-  <" A B C D E F G ">  =  ( <" A B C D E F "> concat  <" G "> )
12 df-s7 11519 . 2  |-  <" N O P Q R S T ">  =  ( <" N O P Q R S "> concat  <" T "> )
1310, 11, 123eqtr4g 2353 1  |-  ( ph  ->  <" A B C D E F G ">  =  <" N O P Q R S T "> )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632  (class class class)co 5874   concat cconcat 11420   <"cs1 11421   <"cs6 11511   <"cs7 11512
This theorem is referenced by:  s8eqd  11534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-s1 11427  df-s2 11514  df-s3 11515  df-s4 11516  df-s5 11517  df-s6 11518  df-s7 11519
  Copyright terms: Public domain W3C validator