MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem Unicode version

Theorem sadadd2lem 12747
Description: Lemma for sadadd2 12748. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
sadcp1.n  |-  ( ph  ->  N  e.  NN0 )
sadcadd.k  |-  K  =  `' (bits  |`  NN0 )
sadadd2lem.1  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
Assertion
Ref Expression
sadadd2lem  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ ( N  +  1 ) ) ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ ( N  + 
1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( N  + 
1 ) ) ) ) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    K( m, n, c)    N( m, c)

Proof of Theorem sadadd2lem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 sadadd2lem.1 . . . . . 6  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
2 sadval.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  NN0 )
3 sadval.b . . . . . . . . . 10  |-  ( ph  ->  B  C_  NN0 )
4 sadval.c . . . . . . . . . 10  |-  C  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
5 sadcp1.n . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN0 )
62, 3, 4, 5sadval 12744 . . . . . . . . 9  |-  ( ph  ->  ( N  e.  ( A sadd  B )  <-> hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ) )
76ifbid 3659 . . . . . . . 8  |-  ( ph  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 )  =  if (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2 ^ N ) ,  0 ) )
82, 3, 4, 5sadcp1 12743 . . . . . . . . 9  |-  ( ph  ->  ( (/)  e.  ( C `  ( N  +  1 ) )  <-> cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ) )
9 2nn0 10074 . . . . . . . . . . . . 13  |-  2  e.  NN0
109a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  NN0 )
1110nn0cnd 10112 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  CC )
1211, 5expp1d 11339 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( N  +  1 ) )  =  ( ( 2 ^ N )  x.  2 ) )
1310, 5nn0expcld 11360 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2 ^ N
)  e.  NN0 )
1413nn0cnd 10112 . . . . . . . . . . 11  |-  ( ph  ->  ( 2 ^ N
)  e.  CC )
1514, 11mulcomd 8946 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2 ^ N )  x.  2 )  =  ( 2  x.  ( 2 ^ N ) ) )
1612, 15eqtrd 2390 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ ( N  +  1 ) )  =  ( 2  x.  ( 2 ^ N ) ) )
17 eqidd 2359 . . . . . . . . 9  |-  ( ph  ->  0  =  0 )
188, 16, 17ifbieq12d 3663 . . . . . . . 8  |-  ( ph  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  =  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2  x.  ( 2 ^ N
) ) ,  0 ) )
197, 18oveq12d 5963 . . . . . . 7  |-  ( ph  ->  ( if ( N  e.  ( A sadd  B
) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `
 ( N  + 
1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) )  =  ( if (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  ( 2 ^ N ) ,  0 )  +  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2  x.  ( 2 ^ N
) ) ,  0 ) ) )
20 sadadd2lem2 12738 . . . . . . . 8  |-  ( ( 2 ^ N )  e.  CC  ->  ( if (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  ( 2 ^ N ) ,  0 )  +  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2  x.  ( 2 ^ N
) ) ,  0 ) )  =  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) )
2114, 20syl 15 . . . . . . 7  |-  ( ph  ->  ( if (hadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) ) ,  ( 2 ^ N
) ,  0 )  +  if (cadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) ) ,  ( 2  x.  (
2 ^ N ) ) ,  0 ) )  =  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) ) )
2219, 21eqtrd 2390 . . . . . 6  |-  ( ph  ->  ( if ( N  e.  ( A sadd  B
) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `
 ( N  + 
1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) )  =  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) ) )
231, 22oveq12d 5963 . . . . 5  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  +  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) ) )
24 inss1 3465 . . . . . . . . . 10  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( A sadd  B )
252, 3, 4sadfval 12740 . . . . . . . . . . 11  |-  ( ph  ->  ( A sadd  B )  =  { k  e. 
NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) ) } )
26 ssrab2 3334 . . . . . . . . . . . 12  |-  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) } 
C_  NN0
2726a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  { k  e.  NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `
 k ) ) }  C_  NN0 )
2825, 27eqsstrd 3288 . . . . . . . . . 10  |-  ( ph  ->  ( A sadd  B ) 
C_  NN0 )
2924, 28syl5ss 3266 . . . . . . . . 9  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  C_  NN0 )
30 fzofi 11128 . . . . . . . . . . 11  |-  ( 0..^ N )  e.  Fin
3130a1i 10 . . . . . . . . . 10  |-  ( ph  ->  ( 0..^ N )  e.  Fin )
32 inss2 3466 . . . . . . . . . 10  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N )
33 ssfi 7171 . . . . . . . . . 10  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  -> 
( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
3431, 32, 33sylancl 643 . . . . . . . . 9  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
35 elfpw 7247 . . . . . . . . 9  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) 
<->  ( ( ( A sadd 
B )  i^i  (
0..^ N ) ) 
C_  NN0  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  e.  Fin )
)
3629, 34, 35sylanbrc 645 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )
37 bitsf1o 12733 . . . . . . . . . . 11  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
38 f1ocnv 5568 . . . . . . . . . . 11  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  ->  `' (bits  |`  NN0 ) : ( ~P NN0  i^i 
Fin ) -1-1-onto-> NN0 )
39 f1of 5555 . . . . . . . . . . 11  |-  ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-onto-> NN0  ->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
4037, 38, 39mp2b 9 . . . . . . . . . 10  |-  `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0
41 sadcadd.k . . . . . . . . . . 11  |-  K  =  `' (bits  |`  NN0 )
4241feq1i 5466 . . . . . . . . . 10  |-  ( K : ( ~P NN0  i^i 
Fin ) --> NN0  <->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
4340, 42mpbir 200 . . . . . . . . 9  |-  K :
( ~P NN0  i^i  Fin ) --> NN0
4443ffvelrni 5747 . . . . . . . 8  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  NN0 )
4536, 44syl 15 . . . . . . 7  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  NN0 )
4645nn0cnd 10112 . . . . . 6  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  CC )
47 0nn0 10072 . . . . . . . . 9  |-  0  e.  NN0
48 ifcl 3677 . . . . . . . . 9  |-  ( ( ( 2 ^ N
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N
) ,  0 )  e.  NN0 )
4913, 47, 48sylancl 643 . . . . . . . 8  |-  ( ph  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
5049nn0cnd 10112 . . . . . . 7  |-  ( ph  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 )  e.  CC )
51 1nn0 10073 . . . . . . . . . . . 12  |-  1  e.  NN0
5251a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  1  e.  NN0 )
535, 52nn0addcld 10114 . . . . . . . . . 10  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
5410, 53nn0expcld 11360 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ ( N  +  1 ) )  e.  NN0 )
55 ifcl 3677 . . . . . . . . 9  |-  ( ( ( 2 ^ ( N  +  1 ) )  e.  NN0  /\  0  e.  NN0 )  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  e.  NN0 )
5654, 47, 55sylancl 643 . . . . . . . 8  |-  ( ph  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  e.  NN0 )
5756nn0cnd 10112 . . . . . . 7  |-  ( ph  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  e.  CC )
5850, 57addcld 8944 . . . . . 6  |-  ( ph  ->  ( if ( N  e.  ( A sadd  B
) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `
 ( N  + 
1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) )  e.  CC )
5914adantr 451 . . . . . . 7  |-  ( (
ph  /\  (/)  e.  ( C `  N ) )  ->  ( 2 ^ N )  e.  CC )
60 0cn 8921 . . . . . . . 8  |-  0  e.  CC
6160a1i 10 . . . . . . 7  |-  ( (
ph  /\  -.  (/)  e.  ( C `  N ) )  ->  0  e.  CC )
6259, 61ifclda 3668 . . . . . 6  |-  ( ph  ->  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 )  e.  CC )
6346, 58, 62add32d 9124 . . . . 5  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  ( if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N
) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) ) )
64 inss1 3465 . . . . . . . . . . 11  |-  ( A  i^i  ( 0..^ N ) )  C_  A
6564, 2syl5ss 3266 . . . . . . . . . 10  |-  ( ph  ->  ( A  i^i  (
0..^ N ) ) 
C_  NN0 )
66 inss2 3466 . . . . . . . . . . 11  |-  ( A  i^i  ( 0..^ N ) )  C_  (
0..^ N )
67 ssfi 7171 . . . . . . . . . . 11  |-  ( ( ( 0..^ N )  e.  Fin  /\  ( A  i^i  ( 0..^ N ) )  C_  (
0..^ N ) )  ->  ( A  i^i  ( 0..^ N ) )  e.  Fin )
6831, 66, 67sylancl 643 . . . . . . . . . 10  |-  ( ph  ->  ( A  i^i  (
0..^ N ) )  e.  Fin )
69 elfpw 7247 . . . . . . . . . 10  |-  ( ( A  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( A  i^i  ( 0..^ N ) )  C_  NN0  /\  ( A  i^i  (
0..^ N ) )  e.  Fin ) )
7065, 68, 69sylanbrc 645 . . . . . . . . 9  |-  ( ph  ->  ( A  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )
7143ffvelrni 5747 . . . . . . . . 9  |-  ( ( A  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( A  i^i  (
0..^ N ) ) )  e.  NN0 )
7270, 71syl 15 . . . . . . . 8  |-  ( ph  ->  ( K `  ( A  i^i  ( 0..^ N ) ) )  e. 
NN0 )
7372nn0cnd 10112 . . . . . . 7  |-  ( ph  ->  ( K `  ( A  i^i  ( 0..^ N ) ) )  e.  CC )
74 inss1 3465 . . . . . . . . . . 11  |-  ( B  i^i  ( 0..^ N ) )  C_  B
7574, 3syl5ss 3266 . . . . . . . . . 10  |-  ( ph  ->  ( B  i^i  (
0..^ N ) ) 
C_  NN0 )
76 inss2 3466 . . . . . . . . . . 11  |-  ( B  i^i  ( 0..^ N ) )  C_  (
0..^ N )
77 ssfi 7171 . . . . . . . . . . 11  |-  ( ( ( 0..^ N )  e.  Fin  /\  ( B  i^i  ( 0..^ N ) )  C_  (
0..^ N ) )  ->  ( B  i^i  ( 0..^ N ) )  e.  Fin )
7831, 76, 77sylancl 643 . . . . . . . . . 10  |-  ( ph  ->  ( B  i^i  (
0..^ N ) )  e.  Fin )
79 elfpw 7247 . . . . . . . . . 10  |-  ( ( B  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( B  i^i  ( 0..^ N ) )  C_  NN0  /\  ( B  i^i  (
0..^ N ) )  e.  Fin ) )
8075, 78, 79sylanbrc 645 . . . . . . . . 9  |-  ( ph  ->  ( B  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )
8143ffvelrni 5747 . . . . . . . . 9  |-  ( ( B  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( B  i^i  (
0..^ N ) ) )  e.  NN0 )
8280, 81syl 15 . . . . . . . 8  |-  ( ph  ->  ( K `  ( B  i^i  ( 0..^ N ) ) )  e. 
NN0 )
8382nn0cnd 10112 . . . . . . 7  |-  ( ph  ->  ( K `  ( B  i^i  ( 0..^ N ) ) )  e.  CC )
8473, 83addcld 8944 . . . . . 6  |-  ( ph  ->  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  e.  CC )
85 ifcl 3677 . . . . . . . . 9  |-  ( ( ( 2 ^ N
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
8613, 47, 85sylancl 643 . . . . . . . 8  |-  ( ph  ->  if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
8786nn0cnd 10112 . . . . . . 7  |-  ( ph  ->  if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  e.  CC )
88 ifcl 3677 . . . . . . . . 9  |-  ( ( ( 2 ^ N
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( N  e.  B ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
8913, 47, 88sylancl 643 . . . . . . . 8  |-  ( ph  ->  if ( N  e.  B ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
9089nn0cnd 10112 . . . . . . 7  |-  ( ph  ->  if ( N  e.  B ,  ( 2 ^ N ) ,  0 )  e.  CC )
9187, 90addcld 8944 . . . . . 6  |-  ( ph  ->  ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  e.  CC )
9284, 91, 62addassd 8947 . . . . 5  |-  ( ph  ->  ( ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A , 
( 2 ^ N
) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B , 
( 2 ^ N
) ,  0 ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) ) )
9323, 63, 923eqtr4d 2400 . . . 4  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  ( if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N
) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A , 
( 2 ^ N
) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) )
9446, 58addcld 8944 . . . . 5  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  e.  CC )
9584, 91addcld 8944 . . . . 5  |-  ( ph  ->  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  e.  CC )
9694, 95, 62addcan2d 9106 . . . 4  |-  ( ph  ->  ( ( ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 )  +  if (
(/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A , 
( 2 ^ N
) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  <-> 
( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) ) )
9793, 96mpbid 201 . . 3  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
9846, 50, 57addassd 8947 . . 3  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) ) )
9973, 87, 83, 90add4d 9125 . . 3  |-  ( ph  ->  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) )  +  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  =  ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A , 
( 2 ^ N
) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
10097, 98, 993eqtr4d 2400 . 2  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) )  +  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
10141bitsinvp1 12737 . . . 4  |-  ( ( ( A sadd  B ) 
C_  NN0  /\  N  e. 
NN0 )  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ ( N  + 
1 ) ) ) )  =  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 ) ) )
10228, 5, 101syl2anc 642 . . 3  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 ) ) )
103102oveq1d 5960 . 2  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ ( N  +  1 ) ) ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) ) )
10441bitsinvp1 12737 . . . 4  |-  ( ( A  C_  NN0  /\  N  e.  NN0 )  ->  ( K `  ( A  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  if ( N  e.  A ,  ( 2 ^ N ) ,  0 ) ) )
1052, 5, 104syl2anc 642 . . 3  |-  ( ph  ->  ( K `  ( A  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) ) )
10641bitsinvp1 12737 . . . 4  |-  ( ( B  C_  NN0  /\  N  e.  NN0 )  ->  ( K `  ( B  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )
1073, 5, 106syl2anc 642 . . 3  |-  ( ph  ->  ( K `  ( B  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( B  i^i  (
0..^ N ) ) )  +  if ( N  e.  B , 
( 2 ^ N
) ,  0 ) ) )
108105, 107oveq12d 5963 . 2  |-  ( ph  ->  ( ( K `  ( A  i^i  (
0..^ ( N  + 
1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( N  + 
1 ) ) ) ) )  =  ( ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) )  +  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
109100, 103, 1083eqtr4d 2400 1  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ ( N  +  1 ) ) ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ ( N  + 
1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( N  + 
1 ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358  haddwhad 1378  caddwcad 1379    = wceq 1642    e. wcel 1710   {crab 2623    i^i cin 3227    C_ wss 3228   (/)c0 3531   ifcif 3641   ~Pcpw 3701    e. cmpt 4158   `'ccnv 4770    |` cres 4773   -->wf 5333   -1-1-onto->wf1o 5336   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947   1oc1o 6559   2oc2o 6560   Fincfn 6951   CCcc 8825   0cc0 8827   1c1 8828    + caddc 8830    x. cmul 8832    - cmin 9127   2c2 9885   NN0cn0 10057  ..^cfzo 10962    seq cseq 11138   ^cexp 11197  bitscbits 12707   sadd csad 12708
This theorem is referenced by:  sadadd2  12748
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-xor 1305  df-tru 1319  df-had 1380  df-cad 1381  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-disj 4075  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-pm 6863  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-oi 7315  df-card 7662  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-n0 10058  df-z 10117  df-uz 10323  df-rp 10447  df-fz 10875  df-fzo 10963  df-fl 11017  df-mod 11066  df-seq 11139  df-exp 11198  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-clim 12058  df-sum 12256  df-dvds 12629  df-bits 12710  df-sad 12739
  Copyright terms: Public domain W3C validator