MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem Unicode version

Theorem sadadd2lem 12934
Description: Lemma for sadadd2 12935. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
sadcp1.n  |-  ( ph  ->  N  e.  NN0 )
sadcadd.k  |-  K  =  `' (bits  |`  NN0 )
sadadd2lem.1  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
Assertion
Ref Expression
sadadd2lem  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ ( N  +  1 ) ) ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ ( N  + 
1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( N  + 
1 ) ) ) ) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    K( m, n, c)    N( m, c)

Proof of Theorem sadadd2lem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 inss1 3529 . . . . . . . . 9  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( A sadd  B )
2 sadval.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  NN0 )
3 sadval.b . . . . . . . . . . 11  |-  ( ph  ->  B  C_  NN0 )
4 sadval.c . . . . . . . . . . 11  |-  C  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
52, 3, 4sadfval 12927 . . . . . . . . . 10  |-  ( ph  ->  ( A sadd  B )  =  { k  e. 
NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) ) } )
6 ssrab2 3396 . . . . . . . . . 10  |-  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) } 
C_  NN0
75, 6syl6eqss 3366 . . . . . . . . 9  |-  ( ph  ->  ( A sadd  B ) 
C_  NN0 )
81, 7syl5ss 3327 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  C_  NN0 )
9 fzofi 11276 . . . . . . . . . 10  |-  ( 0..^ N )  e.  Fin
109a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0..^ N )  e.  Fin )
11 inss2 3530 . . . . . . . . 9  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N )
12 ssfi 7296 . . . . . . . . 9  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  -> 
( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
1310, 11, 12sylancl 644 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
14 elfpw 7374 . . . . . . . 8  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) 
<->  ( ( ( A sadd 
B )  i^i  (
0..^ N ) ) 
C_  NN0  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  e.  Fin )
)
158, 13, 14sylanbrc 646 . . . . . . 7  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )
16 bitsf1o 12920 . . . . . . . . . 10  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
17 f1ocnv 5654 . . . . . . . . . 10  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  ->  `' (bits  |`  NN0 ) : ( ~P NN0  i^i 
Fin ) -1-1-onto-> NN0 )
18 f1of 5641 . . . . . . . . . 10  |-  ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-onto-> NN0  ->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
1916, 17, 18mp2b 10 . . . . . . . . 9  |-  `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0
20 sadcadd.k . . . . . . . . . 10  |-  K  =  `' (bits  |`  NN0 )
2120feq1i 5552 . . . . . . . . 9  |-  ( K : ( ~P NN0  i^i 
Fin ) --> NN0  <->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
2219, 21mpbir 201 . . . . . . . 8  |-  K :
( ~P NN0  i^i  Fin ) --> NN0
2322ffvelrni 5836 . . . . . . 7  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  NN0 )
2415, 23syl 16 . . . . . 6  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  NN0 )
2524nn0cnd 10240 . . . . 5  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  CC )
26 2nn0 10202 . . . . . . . . . 10  |-  2  e.  NN0
2726a1i 11 . . . . . . . . 9  |-  ( ph  ->  2  e.  NN0 )
28 sadcp1.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
2927, 28nn0expcld 11508 . . . . . . . 8  |-  ( ph  ->  ( 2 ^ N
)  e.  NN0 )
30 0nn0 10200 . . . . . . . 8  |-  0  e.  NN0
31 ifcl 3743 . . . . . . . 8  |-  ( ( ( 2 ^ N
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N
) ,  0 )  e.  NN0 )
3229, 30, 31sylancl 644 . . . . . . 7  |-  ( ph  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
3332nn0cnd 10240 . . . . . 6  |-  ( ph  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 )  e.  CC )
34 1nn0 10201 . . . . . . . . . . 11  |-  1  e.  NN0
3534a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  NN0 )
3628, 35nn0addcld 10242 . . . . . . . . 9  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
3727, 36nn0expcld 11508 . . . . . . . 8  |-  ( ph  ->  ( 2 ^ ( N  +  1 ) )  e.  NN0 )
38 ifcl 3743 . . . . . . . 8  |-  ( ( ( 2 ^ ( N  +  1 ) )  e.  NN0  /\  0  e.  NN0 )  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  e.  NN0 )
3937, 30, 38sylancl 644 . . . . . . 7  |-  ( ph  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  e.  NN0 )
4039nn0cnd 10240 . . . . . 6  |-  ( ph  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  e.  CC )
4133, 40addcld 9071 . . . . 5  |-  ( ph  ->  ( if ( N  e.  ( A sadd  B
) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `
 ( N  + 
1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) )  e.  CC )
4225, 41addcld 9071 . . . 4  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  e.  CC )
43 inss1 3529 . . . . . . . . . 10  |-  ( A  i^i  ( 0..^ N ) )  C_  A
4443, 2syl5ss 3327 . . . . . . . . 9  |-  ( ph  ->  ( A  i^i  (
0..^ N ) ) 
C_  NN0 )
45 inss2 3530 . . . . . . . . . 10  |-  ( A  i^i  ( 0..^ N ) )  C_  (
0..^ N )
46 ssfi 7296 . . . . . . . . . 10  |-  ( ( ( 0..^ N )  e.  Fin  /\  ( A  i^i  ( 0..^ N ) )  C_  (
0..^ N ) )  ->  ( A  i^i  ( 0..^ N ) )  e.  Fin )
4710, 45, 46sylancl 644 . . . . . . . . 9  |-  ( ph  ->  ( A  i^i  (
0..^ N ) )  e.  Fin )
48 elfpw 7374 . . . . . . . . 9  |-  ( ( A  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( A  i^i  ( 0..^ N ) )  C_  NN0  /\  ( A  i^i  (
0..^ N ) )  e.  Fin ) )
4944, 47, 48sylanbrc 646 . . . . . . . 8  |-  ( ph  ->  ( A  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )
5022ffvelrni 5836 . . . . . . . 8  |-  ( ( A  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( A  i^i  (
0..^ N ) ) )  e.  NN0 )
5149, 50syl 16 . . . . . . 7  |-  ( ph  ->  ( K `  ( A  i^i  ( 0..^ N ) ) )  e. 
NN0 )
5251nn0cnd 10240 . . . . . 6  |-  ( ph  ->  ( K `  ( A  i^i  ( 0..^ N ) ) )  e.  CC )
53 inss1 3529 . . . . . . . . . 10  |-  ( B  i^i  ( 0..^ N ) )  C_  B
5453, 3syl5ss 3327 . . . . . . . . 9  |-  ( ph  ->  ( B  i^i  (
0..^ N ) ) 
C_  NN0 )
55 inss2 3530 . . . . . . . . . 10  |-  ( B  i^i  ( 0..^ N ) )  C_  (
0..^ N )
56 ssfi 7296 . . . . . . . . . 10  |-  ( ( ( 0..^ N )  e.  Fin  /\  ( B  i^i  ( 0..^ N ) )  C_  (
0..^ N ) )  ->  ( B  i^i  ( 0..^ N ) )  e.  Fin )
5710, 55, 56sylancl 644 . . . . . . . . 9  |-  ( ph  ->  ( B  i^i  (
0..^ N ) )  e.  Fin )
58 elfpw 7374 . . . . . . . . 9  |-  ( ( B  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( B  i^i  ( 0..^ N ) )  C_  NN0  /\  ( B  i^i  (
0..^ N ) )  e.  Fin ) )
5954, 57, 58sylanbrc 646 . . . . . . . 8  |-  ( ph  ->  ( B  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )
6022ffvelrni 5836 . . . . . . . 8  |-  ( ( B  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( B  i^i  (
0..^ N ) ) )  e.  NN0 )
6159, 60syl 16 . . . . . . 7  |-  ( ph  ->  ( K `  ( B  i^i  ( 0..^ N ) ) )  e. 
NN0 )
6261nn0cnd 10240 . . . . . 6  |-  ( ph  ->  ( K `  ( B  i^i  ( 0..^ N ) ) )  e.  CC )
6352, 62addcld 9071 . . . . 5  |-  ( ph  ->  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  e.  CC )
64 ifcl 3743 . . . . . . . 8  |-  ( ( ( 2 ^ N
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
6529, 30, 64sylancl 644 . . . . . . 7  |-  ( ph  ->  if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
6665nn0cnd 10240 . . . . . 6  |-  ( ph  ->  if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  e.  CC )
67 ifcl 3743 . . . . . . . 8  |-  ( ( ( 2 ^ N
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( N  e.  B ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
6829, 30, 67sylancl 644 . . . . . . 7  |-  ( ph  ->  if ( N  e.  B ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
6968nn0cnd 10240 . . . . . 6  |-  ( ph  ->  if ( N  e.  B ,  ( 2 ^ N ) ,  0 )  e.  CC )
7066, 69addcld 9071 . . . . 5  |-  ( ph  ->  ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  e.  CC )
7163, 70addcld 9071 . . . 4  |-  ( ph  ->  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  e.  CC )
7229nn0cnd 10240 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  e.  CC )
7372adantr 452 . . . . 5  |-  ( (
ph  /\  (/)  e.  ( C `  N ) )  ->  ( 2 ^ N )  e.  CC )
74 0cn 9048 . . . . . 6  |-  0  e.  CC
7574a1i 11 . . . . 5  |-  ( (
ph  /\  -.  (/)  e.  ( C `  N ) )  ->  0  e.  CC )
7673, 75ifclda 3734 . . . 4  |-  ( ph  ->  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 )  e.  CC )
77 sadadd2lem.1 . . . . . 6  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
782, 3, 4, 28sadval 12931 . . . . . . . . 9  |-  ( ph  ->  ( N  e.  ( A sadd  B )  <-> hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ) )
7978ifbid 3725 . . . . . . . 8  |-  ( ph  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 )  =  if (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2 ^ N ) ,  0 ) )
802, 3, 4, 28sadcp1 12930 . . . . . . . . 9  |-  ( ph  ->  ( (/)  e.  ( C `  ( N  +  1 ) )  <-> cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ) )
8127nn0cnd 10240 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  CC )
8281, 28expp1d 11487 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( N  +  1 ) )  =  ( ( 2 ^ N )  x.  2 ) )
8372, 81mulcomd 9073 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2 ^ N )  x.  2 )  =  ( 2  x.  ( 2 ^ N ) ) )
8482, 83eqtrd 2444 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ ( N  +  1 ) )  =  ( 2  x.  ( 2 ^ N ) ) )
85 eqidd 2413 . . . . . . . . 9  |-  ( ph  ->  0  =  0 )
8680, 84, 85ifbieq12d 3729 . . . . . . . 8  |-  ( ph  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  =  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2  x.  ( 2 ^ N
) ) ,  0 ) )
8779, 86oveq12d 6066 . . . . . . 7  |-  ( ph  ->  ( if ( N  e.  ( A sadd  B
) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `
 ( N  + 
1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) )  =  ( if (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  ( 2 ^ N ) ,  0 )  +  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2  x.  ( 2 ^ N
) ) ,  0 ) ) )
88 sadadd2lem2 12925 . . . . . . . 8  |-  ( ( 2 ^ N )  e.  CC  ->  ( if (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  ( 2 ^ N ) ,  0 )  +  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2  x.  ( 2 ^ N
) ) ,  0 ) )  =  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) )
8972, 88syl 16 . . . . . . 7  |-  ( ph  ->  ( if (hadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) ) ,  ( 2 ^ N
) ,  0 )  +  if (cadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) ) ,  ( 2  x.  (
2 ^ N ) ) ,  0 ) )  =  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) ) )
9087, 89eqtrd 2444 . . . . . 6  |-  ( ph  ->  ( if ( N  e.  ( A sadd  B
) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `
 ( N  + 
1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) )  =  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) ) )
9177, 90oveq12d 6066 . . . . 5  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  +  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) ) )
9225, 41, 76add32d 9252 . . . . 5  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  ( if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N
) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) ) )
9363, 70, 76addassd 9074 . . . . 5  |-  ( ph  ->  ( ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A , 
( 2 ^ N
) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B , 
( 2 ^ N
) ,  0 ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) ) )
9491, 92, 933eqtr4d 2454 . . . 4  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  ( if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N
) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A , 
( 2 ^ N
) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) )
9542, 71, 76, 94addcan2ad 9236 . . 3  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
9625, 33, 40addassd 9074 . . 3  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) ) )
9752, 66, 62, 69add4d 9253 . . 3  |-  ( ph  ->  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) )  +  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  =  ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A , 
( 2 ^ N
) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
9895, 96, 973eqtr4d 2454 . 2  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) )  +  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
9920bitsinvp1 12924 . . . 4  |-  ( ( ( A sadd  B ) 
C_  NN0  /\  N  e. 
NN0 )  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ ( N  + 
1 ) ) ) )  =  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 ) ) )
1007, 28, 99syl2anc 643 . . 3  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 ) ) )
101100oveq1d 6063 . 2  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ ( N  +  1 ) ) ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) ) )
10220bitsinvp1 12924 . . . 4  |-  ( ( A  C_  NN0  /\  N  e.  NN0 )  ->  ( K `  ( A  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  if ( N  e.  A ,  ( 2 ^ N ) ,  0 ) ) )
1032, 28, 102syl2anc 643 . . 3  |-  ( ph  ->  ( K `  ( A  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) ) )
10420bitsinvp1 12924 . . . 4  |-  ( ( B  C_  NN0  /\  N  e.  NN0 )  ->  ( K `  ( B  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )
1053, 28, 104syl2anc 643 . . 3  |-  ( ph  ->  ( K `  ( B  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( B  i^i  (
0..^ N ) ) )  +  if ( N  e.  B , 
( 2 ^ N
) ,  0 ) ) )
106103, 105oveq12d 6066 . 2  |-  ( ph  ->  ( ( K `  ( A  i^i  (
0..^ ( N  + 
1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( N  + 
1 ) ) ) ) )  =  ( ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) )  +  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
10798, 101, 1063eqtr4d 2454 1  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ ( N  +  1 ) ) ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ ( N  + 
1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( N  + 
1 ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359  haddwhad 1384  caddwcad 1385    = wceq 1649    e. wcel 1721   {crab 2678    i^i cin 3287    C_ wss 3288   (/)c0 3596   ifcif 3707   ~Pcpw 3767    e. cmpt 4234   `'ccnv 4844    |` cres 4847   -->wf 5417   -1-1-onto->wf1o 5420   ` cfv 5421  (class class class)co 6048    e. cmpt2 6050   1oc1o 6684   2oc2o 6685   Fincfn 7076   CCcc 8952   0cc0 8954   1c1 8955    + caddc 8957    x. cmul 8959    - cmin 9255   2c2 10013   NN0cn0 10185  ..^cfzo 11098    seq cseq 11286   ^cexp 11345  bitscbits 12894   sadd csad 12895
This theorem is referenced by:  sadadd2  12935
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-xor 1311  df-tru 1325  df-had 1386  df-cad 1387  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-disj 4151  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-2o 6692  df-oadd 6695  df-er 6872  df-map 6987  df-pm 6988  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-sup 7412  df-oi 7443  df-card 7790  df-cda 8012  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-fz 11008  df-fzo 11099  df-fl 11165  df-mod 11214  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-clim 12245  df-sum 12443  df-dvds 12816  df-bits 12897  df-sad 12926
  Copyright terms: Public domain W3C validator