MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd3 Unicode version

Theorem sadadd3 12668
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
sadcp1.n  |-  ( ph  ->  N  e.  NN0 )
sadcadd.k  |-  K  =  `' (bits  |`  NN0 )
Assertion
Ref Expression
sadadd3  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    K( m, n, c)    N( m, c)

Proof of Theorem sadadd3
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 2nn 9893 . . . . . . . . 9  |-  2  e.  NN
21a1i 10 . . . . . . . 8  |-  ( ph  ->  2  e.  NN )
3 sadcp1.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
42, 3nnexpcld 11282 . . . . . . 7  |-  ( ph  ->  ( 2 ^ N
)  e.  NN )
54nnzd 10132 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  e.  ZZ )
6 iddvds 12558 . . . . . 6  |-  ( ( 2 ^ N )  e.  ZZ  ->  (
2 ^ N ) 
||  ( 2 ^ N ) )
75, 6syl 15 . . . . 5  |-  ( ph  ->  ( 2 ^ N
)  ||  ( 2 ^ N ) )
8 dvds0 12560 . . . . . 6  |-  ( ( 2 ^ N )  e.  ZZ  ->  (
2 ^ N ) 
||  0 )
95, 8syl 15 . . . . 5  |-  ( ph  ->  ( 2 ^ N
)  ||  0 )
10 breq2 4043 . . . . . 6  |-  ( ( 2 ^ N )  =  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 )  ->  (
( 2 ^ N
)  ||  ( 2 ^ N )  <->  ( 2 ^ N )  ||  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) )
11 breq2 4043 . . . . . 6  |-  ( 0  =  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 )  ->  (
( 2 ^ N
)  ||  0  <->  ( 2 ^ N )  ||  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) )
1210, 11ifboth 3609 . . . . 5  |-  ( ( ( 2 ^ N
)  ||  ( 2 ^ N )  /\  ( 2 ^ N
)  ||  0 )  ->  ( 2 ^ N )  ||  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )
137, 9, 12syl2anc 642 . . . 4  |-  ( ph  ->  ( 2 ^ N
)  ||  if ( (/) 
e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )
14 inss1 3402 . . . . . . . . 9  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( A sadd  B )
15 sadval.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  NN0 )
16 sadval.b . . . . . . . . . . 11  |-  ( ph  ->  B  C_  NN0 )
17 sadval.c . . . . . . . . . . 11  |-  C  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
1815, 16, 17sadfval 12659 . . . . . . . . . 10  |-  ( ph  ->  ( A sadd  B )  =  { k  e. 
NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) ) } )
19 ssrab2 3271 . . . . . . . . . . 11  |-  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) } 
C_  NN0
2019a1i 10 . . . . . . . . . 10  |-  ( ph  ->  { k  e.  NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `
 k ) ) }  C_  NN0 )
2118, 20eqsstrd 3225 . . . . . . . . 9  |-  ( ph  ->  ( A sadd  B ) 
C_  NN0 )
2214, 21syl5ss 3203 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  C_  NN0 )
23 fzofi 11052 . . . . . . . . . 10  |-  ( 0..^ N )  e.  Fin
2423a1i 10 . . . . . . . . 9  |-  ( ph  ->  ( 0..^ N )  e.  Fin )
25 inss2 3403 . . . . . . . . 9  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N )
26 ssfi 7099 . . . . . . . . 9  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  -> 
( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
2724, 25, 26sylancl 643 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
28 elfpw 7173 . . . . . . . 8  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) 
<->  ( ( ( A sadd 
B )  i^i  (
0..^ N ) ) 
C_  NN0  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  e.  Fin )
)
2922, 27, 28sylanbrc 645 . . . . . . 7  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )
30 bitsf1o 12652 . . . . . . . . . 10  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
31 f1ocnv 5501 . . . . . . . . . 10  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  ->  `' (bits  |`  NN0 ) : ( ~P NN0  i^i 
Fin ) -1-1-onto-> NN0 )
32 f1of 5488 . . . . . . . . . 10  |-  ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-onto-> NN0  ->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
3330, 31, 32mp2b 9 . . . . . . . . 9  |-  `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0
34 sadcadd.k . . . . . . . . . 10  |-  K  =  `' (bits  |`  NN0 )
3534feq1i 5399 . . . . . . . . 9  |-  ( K : ( ~P NN0  i^i 
Fin ) --> NN0  <->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
3633, 35mpbir 200 . . . . . . . 8  |-  K :
( ~P NN0  i^i  Fin ) --> NN0
3736ffvelrni 5680 . . . . . . 7  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  NN0 )
3829, 37syl 15 . . . . . 6  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  NN0 )
3938nn0cnd 10036 . . . . 5  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  CC )
404nncnd 9778 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  e.  CC )
41 0cn 8847 . . . . . 6  |-  0  e.  CC
42 ifcl 3614 . . . . . 6  |-  ( ( ( 2 ^ N
)  e.  CC  /\  0  e.  CC )  ->  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 )  e.  CC )
4340, 41, 42sylancl 643 . . . . 5  |-  ( ph  ->  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 )  e.  CC )
4439, 43pncan2d 9175 . . . 4  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  -  ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )  =  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )
4513, 44breqtrrd 4065 . . 3  |-  ( ph  ->  ( 2 ^ N
)  ||  ( (
( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  -  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) ) ) )
4638nn0zd 10131 . . . . 5  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  ZZ )
475adantr 451 . . . . . 6  |-  ( (
ph  /\  (/)  e.  ( C `  N ) )  ->  ( 2 ^ N )  e.  ZZ )
48 0z 10051 . . . . . . 7  |-  0  e.  ZZ
4948a1i 10 . . . . . 6  |-  ( (
ph  /\  -.  (/)  e.  ( C `  N ) )  ->  0  e.  ZZ )
5047, 49ifclda 3605 . . . . 5  |-  ( ph  ->  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 )  e.  ZZ )
5146, 50zaddcld 10137 . . . 4  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  e.  ZZ )
52 moddvds 12554 . . . 4  |-  ( ( ( 2 ^ N
)  e.  NN  /\  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  e.  ZZ  /\  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  e.  ZZ )  ->  ( ( ( ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  mod  ( 2 ^ N ) )  =  ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  <-> 
( 2 ^ N
)  ||  ( (
( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  -  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) ) ) ) )
534, 51, 46, 52syl3anc 1182 . . 3  |-  ( ph  ->  ( ( ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  mod  ( 2 ^ N ) )  =  ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  <-> 
( 2 ^ N
)  ||  ( (
( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  -  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) ) ) ) )
5445, 53mpbird 223 . 2  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  mod  ( 2 ^ N ) )  =  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N ) ) )
5515, 16, 17, 3, 34sadadd2 12667 . . 3  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
5655oveq1d 5889 . 2  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  mod  ( 2 ^ N ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
5754, 56eqtr3d 2330 1  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358  haddwhad 1368  caddwcad 1369    = wceq 1632    e. wcel 1696   {crab 2560    i^i cin 3164    C_ wss 3165   (/)c0 3468   ifcif 3578   ~Pcpw 3638   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704    |` cres 4707   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1oc1o 6488   2oc2o 6489   Fincfn 6879   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    - cmin 9053   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040  ..^cfzo 10886    mod cmo 10989    seq cseq 11062   ^cexp 11120    || cdivides 12547  bitscbits 12626   sadd csad 12627
This theorem is referenced by:  sadaddlem  12673  sadasslem  12677  sadeq  12679
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-xor 1296  df-tru 1310  df-had 1370  df-cad 1371  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-dvds 12548  df-bits 12629  df-sad 12658
  Copyright terms: Public domain W3C validator