MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadass Unicode version

Theorem sadass 12662
Description: Sequence addition is associative. (Contributed by Mario Carneiro, 9-Sep-2016.)
Assertion
Ref Expression
sadass  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  ( ( A sadd  B
) sadd  C )  =  ( A sadd  ( B sadd  C
) ) )

Proof of Theorem sadass
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 sadcl 12653 . . . . . 6  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0 )  ->  ( A sadd  B )  C_  NN0 )
213adant3 975 . . . . 5  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  ( A sadd  B ) 
C_  NN0 )
3 simp3 957 . . . . 5  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  C  C_  NN0 )
4 sadcl 12653 . . . . 5  |-  ( ( ( A sadd  B ) 
C_  NN0  /\  C  C_  NN0 )  ->  ( ( A sadd  B ) sadd  C ) 
C_  NN0 )
52, 3, 4syl2anc 642 . . . 4  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  ( ( A sadd  B
) sadd  C )  C_  NN0 )
65sseld 3179 . . 3  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  ( k  e.  ( ( A sadd  B ) sadd 
C )  ->  k  e.  NN0 ) )
7 simp1 955 . . . . 5  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  A  C_  NN0 )
8 sadcl 12653 . . . . . 6  |-  ( ( B  C_  NN0  /\  C  C_ 
NN0 )  ->  ( B sadd  C )  C_  NN0 )
983adant1 973 . . . . 5  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  ( B sadd  C ) 
C_  NN0 )
10 sadcl 12653 . . . . 5  |-  ( ( A  C_  NN0  /\  ( B sadd  C )  C_  NN0 )  ->  ( A sadd  ( B sadd 
C ) )  C_  NN0 )
117, 9, 10syl2anc 642 . . . 4  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  ( A sadd  ( B sadd 
C ) )  C_  NN0 )
1211sseld 3179 . . 3  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  ( k  e.  ( A sadd  ( B sadd  C
) )  ->  k  e.  NN0 ) )
137adantr 451 . . . . . . . 8  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  A  C_ 
NN0 )
14 simpl2 959 . . . . . . . 8  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  B  C_ 
NN0 )
153adantr 451 . . . . . . . 8  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  C  C_ 
NN0 )
16 simpr 447 . . . . . . . . 9  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  k  e.  NN0 )
17 1nn0 9981 . . . . . . . . . 10  |-  1  e.  NN0
1817a1i 10 . . . . . . . . 9  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  1  e.  NN0 )
1916, 18nn0addcld 10022 . . . . . . . 8  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  (
k  +  1 )  e.  NN0 )
2013, 14, 15, 19sadasslem 12661 . . . . . . 7  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  (
( ( A sadd  B
) sadd  C )  i^i  (
0..^ ( k  +  1 ) ) )  =  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ ( k  +  1 ) ) ) )
2120eleq2d 2350 . . . . . 6  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  (
k  e.  ( ( ( A sadd  B ) sadd 
C )  i^i  (
0..^ ( k  +  1 ) ) )  <-> 
k  e.  ( ( A sadd  ( B sadd  C
) )  i^i  (
0..^ ( k  +  1 ) ) ) ) )
22 elin 3358 . . . . . 6  |-  ( k  e.  ( ( ( A sadd  B ) sadd  C
)  i^i  ( 0..^ ( k  +  1 ) ) )  <->  ( k  e.  ( ( A sadd  B
) sadd  C )  /\  k  e.  ( 0..^ ( k  +  1 ) ) ) )
23 elin 3358 . . . . . 6  |-  ( k  e.  ( ( A sadd  ( B sadd  C ) )  i^i  ( 0..^ ( k  +  1 ) ) )  <->  ( k  e.  ( A sadd  ( B sadd 
C ) )  /\  k  e.  ( 0..^ ( k  +  1 ) ) ) )
2421, 22, 233bitr3g 278 . . . . 5  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  (
( k  e.  ( ( A sadd  B ) sadd 
C )  /\  k  e.  ( 0..^ ( k  +  1 ) ) )  <->  ( k  e.  ( A sadd  ( B sadd 
C ) )  /\  k  e.  ( 0..^ ( k  +  1 ) ) ) ) )
25 nn0uz 10262 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
2616, 25syl6eleq 2373 . . . . . . . 8  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  k  e.  ( ZZ>= `  0 )
)
27 eluzfz2 10804 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  ( 0 ... k
) )
2826, 27syl 15 . . . . . . 7  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  k  e.  ( 0 ... k
) )
2916nn0zd 10115 . . . . . . . 8  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  k  e.  ZZ )
30 fzval3 10911 . . . . . . . 8  |-  ( k  e.  ZZ  ->  (
0 ... k )  =  ( 0..^ ( k  +  1 ) ) )
3129, 30syl 15 . . . . . . 7  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  (
0 ... k )  =  ( 0..^ ( k  +  1 ) ) )
3228, 31eleqtrd 2359 . . . . . 6  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  k  e.  ( 0..^ ( k  +  1 ) ) )
3332biantrud 493 . . . . 5  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  (
k  e.  ( ( A sadd  B ) sadd  C
)  <->  ( k  e.  ( ( A sadd  B
) sadd  C )  /\  k  e.  ( 0..^ ( k  +  1 ) ) ) ) )
3432biantrud 493 . . . . 5  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  (
k  e.  ( A sadd  ( B sadd  C ) )  <->  ( k  e.  ( A sadd  ( B sadd 
C ) )  /\  k  e.  ( 0..^ ( k  +  1 ) ) ) ) )
3524, 33, 343bitr4d 276 . . . 4  |-  ( ( ( A  C_  NN0  /\  B  C_  NN0  /\  C  C_  NN0 )  /\  k  e. 
NN0 )  ->  (
k  e.  ( ( A sadd  B ) sadd  C
)  <->  k  e.  ( A sadd  ( B sadd  C
) ) ) )
3635ex 423 . . 3  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  ( k  e.  NN0  ->  ( k  e.  ( ( A sadd  B ) sadd 
C )  <->  k  e.  ( A sadd  ( B sadd  C ) ) ) ) )
376, 12, 36pm5.21ndd 343 . 2  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  ( k  e.  ( ( A sadd  B ) sadd 
C )  <->  k  e.  ( A sadd  ( B sadd  C ) ) ) )
3837eqrdv 2281 1  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0  /\  C  C_  NN0 )  ->  ( ( A sadd  B
) sadd  C )  =  ( A sadd  ( B sadd  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    i^i cin 3151    C_ wss 3152   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782  ..^cfzo 10870   sadd csad 12611
This theorem is referenced by:  bitsres  12664
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-xor 1296  df-tru 1310  df-had 1370  df-cad 1371  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-dvds 12532  df-bits 12613  df-sad 12642
  Copyright terms: Public domain W3C validator