MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcf Unicode version

Theorem sadcf 12660
Description: The carry sequence is a sequence of elements of  2o encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
Assertion
Ref Expression
sadcf  |-  ( ph  ->  C : NN0 --> 2o )
Distinct variable groups:    m, c, n    A, c, m    B, c, m
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)

Proof of Theorem sadcf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 9996 . . . . . 6  |-  0  e.  NN0
2 iftrue 3584 . . . . . . 7  |-  ( n  =  0  ->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) )  =  (/) )
3 eqid 2296 . . . . . . 7  |-  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) )  =  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) )
4 0ex 4166 . . . . . . 7  |-  (/)  e.  _V
52, 3, 4fvmpt 5618 . . . . . 6  |-  ( 0  e.  NN0  ->  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  =  (/) )
61, 5ax-mp 8 . . . . 5  |-  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  =  (/)
74prid1 3747 . . . . . 6  |-  (/)  e.  { (/)
,  1o }
8 df2o3 6508 . . . . . 6  |-  2o  =  { (/) ,  1o }
97, 8eleqtrri 2369 . . . . 5  |-  (/)  e.  2o
106, 9eqeltri 2366 . . . 4  |-  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  e.  2o
1110a1i 10 . . 3  |-  ( ph  ->  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ` 
0 )  e.  2o )
12 df-ov 5877 . . . . 5  |-  ( x ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) y )  =  ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) `
 <. x ,  y
>. )
13 1on 6502 . . . . . . . . . . . 12  |-  1o  e.  On
1413elexi 2810 . . . . . . . . . . 11  |-  1o  e.  _V
1514prid2 3748 . . . . . . . . . 10  |-  1o  e.  {
(/) ,  1o }
1615, 8eleqtrri 2369 . . . . . . . . 9  |-  1o  e.  2o
1716, 9keepel 3635 . . . . . . . 8  |-  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) )  e.  2o
1817rgen2w 2624 . . . . . . 7  |-  A. c  e.  2o  A. m  e. 
NN0  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) )  e.  2o
19 eqid 2296 . . . . . . . 8  |-  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) )  =  ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) )
2019fmpt2 6207 . . . . . . 7  |-  ( A. c  e.  2o  A. m  e.  NN0  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) )  e.  2o  <->  ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) : ( 2o  X.  NN0 ) --> 2o )
2118, 20mpbi 199 . . . . . 6  |-  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) : ( 2o  X.  NN0 ) --> 2o
2221, 9f0cli 5687 . . . . 5  |-  ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) `  <. x ,  y >. )  e.  2o
2312, 22eqeltri 2366 . . . 4  |-  ( x ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) y )  e.  2o
2423a1i 10 . . 3  |-  ( (
ph  /\  ( x  e.  2o  /\  y  e. 
_V ) )  -> 
( x ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) y )  e.  2o )
25 nn0uz 10278 . . 3  |-  NN0  =  ( ZZ>= `  0 )
26 0z 10051 . . . 4  |-  0  e.  ZZ
2726a1i 10 . . 3  |-  ( ph  ->  0  e.  ZZ )
28 fvex 5555 . . . 4  |-  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 x )  e. 
_V
2928a1i 10 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( (
n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 x )  e. 
_V )
3011, 24, 25, 27, 29seqf2 11081 . 2  |-  ( ph  ->  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) : NN0 --> 2o )
31 sadval.c . . 3  |-  C  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
3231feq1i 5399 . 2  |-  ( C : NN0 --> 2o  <->  seq  0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) : NN0 --> 2o )
3330, 32sylibr 203 1  |-  ( ph  ->  C : NN0 --> 2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358  caddwcad 1369    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ifcif 3578   {cpr 3654   <.cop 3656    e. cmpt 4093   Oncon0 4408    X. cxp 4703   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1oc1o 6488   2oc2o 6489   0cc0 8753   1c1 8754    + caddc 8756    - cmin 9053   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246    seq cseq 11062
This theorem is referenced by:  sadcp1  12662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-seq 11063
  Copyright terms: Public domain W3C validator