MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcf Structured version   Unicode version

Theorem sadcf 12955
Description: The carry sequence is a sequence of elements of  2o encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
Assertion
Ref Expression
sadcf  |-  ( ph  ->  C : NN0 --> 2o )
Distinct variable groups:    m, c, n    A, c, m    B, c, m
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)

Proof of Theorem sadcf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 10226 . . . . . 6  |-  0  e.  NN0
2 iftrue 3737 . . . . . . 7  |-  ( n  =  0  ->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) )  =  (/) )
3 eqid 2435 . . . . . . 7  |-  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) )  =  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) )
4 0ex 4331 . . . . . . 7  |-  (/)  e.  _V
52, 3, 4fvmpt 5798 . . . . . 6  |-  ( 0  e.  NN0  ->  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  =  (/) )
61, 5ax-mp 8 . . . . 5  |-  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  =  (/)
74prid1 3904 . . . . . 6  |-  (/)  e.  { (/)
,  1o }
8 df2o3 6729 . . . . . 6  |-  2o  =  { (/) ,  1o }
97, 8eleqtrri 2508 . . . . 5  |-  (/)  e.  2o
106, 9eqeltri 2505 . . . 4  |-  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  e.  2o
1110a1i 11 . . 3  |-  ( ph  ->  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ` 
0 )  e.  2o )
12 df-ov 6076 . . . . 5  |-  ( x ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) y )  =  ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) `
 <. x ,  y
>. )
13 1on 6723 . . . . . . . . . . . 12  |-  1o  e.  On
1413elexi 2957 . . . . . . . . . . 11  |-  1o  e.  _V
1514prid2 3905 . . . . . . . . . 10  |-  1o  e.  {
(/) ,  1o }
1615, 8eleqtrri 2508 . . . . . . . . 9  |-  1o  e.  2o
1716, 9keepel 3788 . . . . . . . 8  |-  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) )  e.  2o
1817rgen2w 2766 . . . . . . 7  |-  A. c  e.  2o  A. m  e. 
NN0  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) )  e.  2o
19 eqid 2435 . . . . . . . 8  |-  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) )  =  ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) )
2019fmpt2 6410 . . . . . . 7  |-  ( A. c  e.  2o  A. m  e.  NN0  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) )  e.  2o  <->  ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) : ( 2o  X.  NN0 ) --> 2o )
2118, 20mpbi 200 . . . . . 6  |-  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) : ( 2o  X.  NN0 ) --> 2o
2221, 9f0cli 5872 . . . . 5  |-  ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) `  <. x ,  y >. )  e.  2o
2312, 22eqeltri 2505 . . . 4  |-  ( x ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) y )  e.  2o
2423a1i 11 . . 3  |-  ( (
ph  /\  ( x  e.  2o  /\  y  e. 
_V ) )  -> 
( x ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) y )  e.  2o )
25 nn0uz 10510 . . 3  |-  NN0  =  ( ZZ>= `  0 )
26 0z 10283 . . . 4  |-  0  e.  ZZ
2726a1i 11 . . 3  |-  ( ph  ->  0  e.  ZZ )
28 fvex 5734 . . . 4  |-  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 x )  e. 
_V
2928a1i 11 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( (
n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 x )  e. 
_V )
3011, 24, 25, 27, 29seqf2 11332 . 2  |-  ( ph  ->  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) : NN0 --> 2o )
31 sadval.c . . 3  |-  C  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
3231feq1i 5577 . 2  |-  ( C : NN0 --> 2o  <->  seq  0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) : NN0 --> 2o )
3330, 32sylibr 204 1  |-  ( ph  ->  C : NN0 --> 2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359  caddwcad 1388    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    C_ wss 3312   (/)c0 3620   ifcif 3731   {cpr 3807   <.cop 3809    e. cmpt 4258   Oncon0 4573    X. cxp 4868   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1oc1o 6709   2oc2o 6710   0cc0 8980   1c1 8981    + caddc 8983    - cmin 9281   NN0cn0 10211   ZZcz 10272   ZZ>=cuz 10478    seq cseq 11313
This theorem is referenced by:  sadcp1  12957
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-nn 9991  df-n0 10212  df-z 10273  df-uz 10479  df-fz 11034  df-seq 11314
  Copyright terms: Public domain W3C validator