MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadeq Structured version   Unicode version

Theorem sadeq 12986
Description: Any element of a sequence sum only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadeq.a  |-  ( ph  ->  A  C_  NN0 )
sadeq.b  |-  ( ph  ->  B  C_  NN0 )
sadeq.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
sadeq  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )

Proof of Theorem sadeq
Dummy variables  m  c  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 3553 . . . . . . . 8  |-  ( ( A  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) )  =  ( A  i^i  ( ( 0..^ N )  i^i  (
0..^ N ) ) )
2 inidm 3552 . . . . . . . . 9  |-  ( ( 0..^ N )  i^i  ( 0..^ N ) )  =  ( 0..^ N )
32ineq2i 3541 . . . . . . . 8  |-  ( A  i^i  ( ( 0..^ N )  i^i  (
0..^ N ) ) )  =  ( A  i^i  ( 0..^ N ) )
41, 3eqtri 2458 . . . . . . 7  |-  ( ( A  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) )  =  ( A  i^i  ( 0..^ N ) )
54fveq2i 5733 . . . . . 6  |-  ( `' (bits  |`  NN0 ) `  ( ( A  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )
6 inass 3553 . . . . . . . 8  |-  ( ( B  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) )  =  ( B  i^i  ( ( 0..^ N )  i^i  (
0..^ N ) ) )
72ineq2i 3541 . . . . . . . 8  |-  ( B  i^i  ( ( 0..^ N )  i^i  (
0..^ N ) ) )  =  ( B  i^i  ( 0..^ N ) )
86, 7eqtri 2458 . . . . . . 7  |-  ( ( B  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) )  =  ( B  i^i  ( 0..^ N ) )
98fveq2i 5733 . . . . . 6  |-  ( `' (bits  |`  NN0 ) `  ( ( B  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) )
105, 9oveq12i 6095 . . . . 5  |-  ( ( `' (bits  |`  NN0 ) `  ( ( A  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( ( B  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) ) ) )  =  ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) ) )
1110oveq1i 6093 . . . 4  |-  ( ( ( `' (bits  |`  NN0 ) `  ( ( A  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( ( B  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) ) )  mod  (
2 ^ N ) )
12 inss1 3563 . . . . . 6  |-  ( A  i^i  ( 0..^ N ) )  C_  A
13 sadeq.a . . . . . 6  |-  ( ph  ->  A  C_  NN0 )
1412, 13syl5ss 3361 . . . . 5  |-  ( ph  ->  ( A  i^i  (
0..^ N ) ) 
C_  NN0 )
15 inss1 3563 . . . . . 6  |-  ( B  i^i  ( 0..^ N ) )  C_  B
16 sadeq.b . . . . . 6  |-  ( ph  ->  B  C_  NN0 )
1715, 16syl5ss 3361 . . . . 5  |-  ( ph  ->  ( B  i^i  (
0..^ N ) ) 
C_  NN0 )
18 eqid 2438 . . . . 5  |-  seq  0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  ( A  i^i  ( 0..^ N ) ) ,  m  e.  ( B  i^i  (
0..^ N ) ) ,  (/)  e.  c
) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )  =  seq  0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  ( A  i^i  ( 0..^ N ) ) ,  m  e.  ( B  i^i  (
0..^ N ) ) ,  (/)  e.  c
) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
19 sadeq.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
20 eqid 2438 . . . . 5  |-  `' (bits  |`  NN0 )  =  `' (bits  |`  NN0 )
2114, 17, 18, 19, 20sadadd3 12975 . . . 4  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( `' (bits  |`  NN0 ) `  ( ( A  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( ( B  i^i  ( 0..^ N ) )  i^i  ( 0..^ N ) ) ) )  mod  ( 2 ^ N ) ) )
22 eqid 2438 . . . . 5  |-  seq  0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) )  =  seq  0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
2313, 16, 22, 19, 20sadadd3 12975 . . . 4  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  mod  (
2 ^ N ) )  =  ( ( ( `' (bits  |`  NN0 ) `  ( A  i^i  (
0..^ N ) ) )  +  ( `' (bits  |`  NN0 ) `  ( B  i^i  (
0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
2411, 21, 233eqtr4a 2496 . . 3  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  mod  (
2 ^ N ) ) )
25 inss1 3563 . . . . . . . 8  |-  ( ( ( A  i^i  (
0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) )  C_  ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )
26 sadcl 12976 . . . . . . . . 9  |-  ( ( ( A  i^i  (
0..^ N ) ) 
C_  NN0  /\  ( B  i^i  ( 0..^ N ) )  C_  NN0 )  ->  ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  C_  NN0 )
2714, 17, 26syl2anc 644 . . . . . . . 8  |-  ( ph  ->  ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  C_  NN0 )
2825, 27syl5ss 3361 . . . . . . 7  |-  ( ph  ->  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  C_  NN0 )
29 fzofi 11315 . . . . . . . . 9  |-  ( 0..^ N )  e.  Fin
3029a1i 11 . . . . . . . 8  |-  ( ph  ->  ( 0..^ N )  e.  Fin )
31 inss2 3564 . . . . . . . 8  |-  ( ( ( A  i^i  (
0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) )  C_  ( 0..^ N )
32 ssfi 7331 . . . . . . . 8  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  ->  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  e.  Fin )
3330, 31, 32sylancl 645 . . . . . . 7  |-  ( ph  ->  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  e.  Fin )
34 elfpw 7410 . . . . . . 7  |-  ( ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( ( ( A  i^i  (
0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) )  C_  NN0 
/\  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  e.  Fin )
)
3528, 33, 34sylanbrc 647 . . . . . 6  |-  ( ph  ->  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  e.  ( ~P
NN0  i^i  Fin )
)
36 bitsf1o 12959 . . . . . . . 8  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
37 f1ocnv 5689 . . . . . . . 8  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  ->  `' (bits  |`  NN0 ) : ( ~P NN0  i^i 
Fin ) -1-1-onto-> NN0 )
38 f1of 5676 . . . . . . . 8  |-  ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-onto-> NN0  ->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
3936, 37, 38mp2b 10 . . . . . . 7  |-  `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0
4039ffvelrni 5871 . . . . . 6  |-  ( ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  NN0 )
4135, 40syl 16 . . . . 5  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  NN0 )
4241nn0red 10277 . . . 4  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  RR )
43 2rp 10619 . . . . . 6  |-  2  e.  RR+
4443a1i 11 . . . . 5  |-  ( ph  ->  2  e.  RR+ )
4519nn0zd 10375 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
4644, 45rpexpcld 11548 . . . 4  |-  ( ph  ->  ( 2 ^ N
)  e.  RR+ )
4741nn0ge0d 10279 . . . 4  |-  ( ph  ->  0  <_  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
48 fvres 5747 . . . . . . . . 9  |-  ( ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  NN0  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )  =  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) ) )
4941, 48syl 16 . . . . . . . 8  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )  =  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) ) )
50 f1ocnvfv2 6017 . . . . . . . . 9  |-  ( ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) )  e.  ( ~P
NN0  i^i  Fin )
)  ->  ( (bits  |` 
NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
5136, 35, 50sylancr 646 . . . . . . . 8  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
5249, 51eqtr3d 2472 . . . . . . 7  |-  ( ph  ->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
5352, 31syl6eqss 3400 . . . . . 6  |-  ( ph  ->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )  C_  ( 0..^ N ) )
5441nn0zd 10375 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  ZZ )
55 bitsfzo 12949 . . . . . . 7  |-  ( ( ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  ZZ  /\  N  e.  NN0 )  ->  ( ( `' (bits  |`  NN0 ) `  (
( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  <->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )  C_  ( 0..^ N ) ) )
5654, 19, 55syl2anc 644 . . . . . 6  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  <->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )  C_  ( 0..^ N ) ) )
5753, 56mpbird 225 . . . . 5  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) ) )
58 elfzolt2 11150 . . . . 5  |-  ( ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  -> 
( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  <  (
2 ^ N ) )
5957, 58syl 16 . . . 4  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  <  (
2 ^ N ) )
60 modid 11272 . . . 4  |-  ( ( ( ( `' (bits  |`  NN0 ) `  (
( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) ) )  e.  RR  /\  (
2 ^ N )  e.  RR+ )  /\  (
0  <_  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  /\  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  <  (
2 ^ N ) ) )  ->  (
( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  mod  (
2 ^ N ) )  =  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
6142, 46, 47, 59, 60syl22anc 1186 . . 3  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
62 inss1 3563 . . . . . . . 8  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( A sadd  B )
63 sadcl 12976 . . . . . . . . 9  |-  ( ( A  C_  NN0  /\  B  C_ 
NN0 )  ->  ( A sadd  B )  C_  NN0 )
6413, 16, 63syl2anc 644 . . . . . . . 8  |-  ( ph  ->  ( A sadd  B ) 
C_  NN0 )
6562, 64syl5ss 3361 . . . . . . 7  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  C_  NN0 )
66 inss2 3564 . . . . . . . 8  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N )
67 ssfi 7331 . . . . . . . 8  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  -> 
( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
6830, 66, 67sylancl 645 . . . . . . 7  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
69 elfpw 7410 . . . . . . 7  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) 
<->  ( ( ( A sadd 
B )  i^i  (
0..^ N ) ) 
C_  NN0  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  e.  Fin )
)
7065, 68, 69sylanbrc 647 . . . . . 6  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )
7139ffvelrni 5871 . . . . . 6  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  NN0 )
7270, 71syl 16 . . . . 5  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  NN0 )
7372nn0red 10277 . . . 4  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  RR )
7472nn0ge0d 10279 . . . 4  |-  ( ph  ->  0  <_  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )
75 fvres 5747 . . . . . . . . 9  |-  ( ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  NN0  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )  =  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) ) )
7672, 75syl 16 . . . . . . . 8  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )  =  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) ) )
77 f1ocnvfv2 6017 . . . . . . . . 9  |-  ( ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  ( ( A sadd 
B )  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )  -> 
( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )  =  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )
7836, 70, 77sylancr 646 . . . . . . . 8  |-  ( ph  ->  ( (bits  |`  NN0 ) `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )  =  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )
7976, 78eqtr3d 2472 . . . . . . 7  |-  ( ph  ->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )  =  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )
8079, 66syl6eqss 3400 . . . . . 6  |-  ( ph  ->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )  C_  ( 0..^ N ) )
8172nn0zd 10375 . . . . . . 7  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  ZZ )
82 bitsfzo 12949 . . . . . . 7  |-  ( ( ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  ZZ  /\  N  e.  NN0 )  ->  (
( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  <->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )  C_  ( 0..^ N ) ) )
8381, 19, 82syl2anc 644 . . . . . 6  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  <->  (bits `  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )  C_  ( 0..^ N ) ) )
8480, 83mpbird 225 . . . . 5  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) ) )
85 elfzolt2 11150 . . . . 5  |-  ( ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  ( 0..^ ( 2 ^ N ) )  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  <  ( 2 ^ N ) )
8684, 85syl 16 . . . 4  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  <  ( 2 ^ N ) )
87 modid 11272 . . . 4  |-  ( ( ( ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  RR  /\  ( 2 ^ N
)  e.  RR+ )  /\  ( 0  <_  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  /\  ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  <  (
2 ^ N ) ) )  ->  (
( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )
8873, 46, 74, 86, 87syl22anc 1186 . . 3  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  mod  (
2 ^ N ) )  =  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )
8924, 61, 883eqtr3rd 2479 . 2  |-  ( ph  ->  ( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  (
( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
90 f1of1 5675 . . . . 5  |-  ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-onto-> NN0  ->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-> NN0 )
9136, 37, 90mp2b 10 . . . 4  |-  `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-> NN0
92 f1fveq 6010 . . . 4  |-  ( ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i 
Fin ) -1-1-> NN0  /\  ( ( ( A sadd 
B )  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin )  /\  (
( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) ) )  -> 
( ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  <->  ( ( A sadd  B )  i^i  (
0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
9391, 92mpan 653 . . 3  |-  ( ( ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  /\  ( ( ( A  i^i  (
0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )  ->  (
( `' (bits  |`  NN0 ) `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  (
( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  (
0..^ N ) ) )  i^i  ( 0..^ N ) ) )  <-> 
( ( A sadd  B
)  i^i  ( 0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
9470, 35, 93syl2anc 644 . 2  |-  ( ph  ->  ( ( `' (bits  |`  NN0 ) `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  =  ( `' (bits  |`  NN0 ) `  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )  <->  ( ( A sadd  B )  i^i  (
0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) ) )
9589, 94mpbid 203 1  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  =  ( ( ( A  i^i  ( 0..^ N ) ) sadd  ( B  i^i  ( 0..^ N ) ) )  i^i  ( 0..^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360  caddwcad 1389    = wceq 1653    e. wcel 1726    i^i cin 3321    C_ wss 3322   (/)c0 3630   ifcif 3741   ~Pcpw 3801   class class class wbr 4214    e. cmpt 4268   `'ccnv 4879    |` cres 4882   -->wf 5452   -1-1->wf1 5453   -1-1-onto->wf1o 5455   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085   1oc1o 6719   2oc2o 6720   Fincfn 7111   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    < clt 9122    <_ cle 9123    - cmin 9293   2c2 10051   NN0cn0 10223   ZZcz 10284   RR+crp 10614  ..^cfzo 11137    mod cmo 11252    seq cseq 11325   ^cexp 11384  bitscbits 12933   sadd csad 12934
This theorem is referenced by:  smuval2  12996  smueqlem  13004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-xor 1315  df-tru 1329  df-had 1390  df-cad 1391  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-disj 4185  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-clim 12284  df-sum 12482  df-dvds 12855  df-bits 12936  df-sad 12965
  Copyright terms: Public domain W3C validator