Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sb5ALTVD Structured version   Unicode version

Theorem sb5ALTVD 28962
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 20 Excercise 3.a., which is sb5 2175, found in the "Answers to Starred Exercises" on page 457 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sb5ALT 28546 is sb5ALTVD 28962 without virtual deductions and was automatically derived from sb5ALTVD 28962.
1::  |-  (. [ y  /  x ] ph  ->.  [ y  /  x ] ph ).
2::  |-  [ y  /  x ] x  =  y
3:1,2:  |-  (. [ y  /  x ] ph  ->.  [ y  /  x ] ( x  =  y  /\  ph ) ).
4:3:  |-  (. [ y  /  x ] ph  ->.  E. x ( x  =  y  /\  ph  ) ).
5:4:  |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph )  )
6::  |-  (. E. x ( x  =  y  /\  ph )  ->.  E. x ( x  =  y  /\  ph ) ).
7::  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph  )  ->.  ( x  =  y  /\  ph ) ).
8:7:  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph  )  ->.  ph ).
9:7:  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph  )  ->.  x  =  y ).
10:8,9:  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph  )  ->.  [ y  /  x ] ph ).
101::  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
11:101,10:  |-  ( E. x ( x  =  y  /\  ph )  ->  [ y  /  x ] ph  )
12:5,11:  |-  ( ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph  ) )  /\  ( E. x ( x  =  y  /\  ph )  ->  [ y  /  x ] ph ) )
qed:12:  |-  ( [ y  /  x ] ph  <->  E. x ( x  =  y  /\  ph )  )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sb5ALTVD  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb5ALTVD
StepHypRef Expression
1 idn1 28602 . . . . . 6  |-  (. [
y  /  x ] ph  ->.  [ y  /  x ] ph ).
2 equsb1 2113 . . . . . 6  |-  [ y  /  x ] x  =  y
3 sban 2143 . . . . . . 7  |-  ( [ y  /  x ]
( x  =  y  /\  ph )  <->  ( [
y  /  x ]
x  =  y  /\  [ y  /  x ] ph ) )
43simplbi2com 1383 . . . . . 6  |-  ( [ y  /  x ] ph  ->  ( [ y  /  x ] x  =  y  ->  [ y  /  x ] ( x  =  y  /\  ph ) ) )
51, 2, 4e10 28732 . . . . 5  |-  (. [
y  /  x ] ph  ->.  [ y  /  x ] ( x  =  y  /\  ph ) ).
6 spsbe 1663 . . . . 5  |-  ( [ y  /  x ]
( x  =  y  /\  ph )  ->  E. x ( x  =  y  /\  ph )
)
75, 6e1_ 28665 . . . 4  |-  (. [
y  /  x ] ph  ->.  E. x ( x  =  y  /\  ph ) ).
87in1 28599 . . 3  |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph ) )
9 hbs1 2180 . . . 4  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
10 idn2 28651 . . . . . 6  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph )  ->.  ( x  =  y  /\  ph ) ).
11 simpr 448 . . . . . 6  |-  ( ( x  =  y  /\  ph )  ->  ph )
1210, 11e2 28669 . . . . 5  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph )  ->.  ph ).
13 simpl 444 . . . . . 6  |-  ( ( x  =  y  /\  ph )  ->  x  =  y )
1410, 13e2 28669 . . . . 5  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph )  ->.  x  =  y ).
15 sbequ1 1943 . . . . . 6  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
1615com12 29 . . . . 5  |-  ( ph  ->  ( x  =  y  ->  [ y  /  x ] ph ) )
1712, 14, 16e22 28709 . . . 4  |-  (. E. x ( x  =  y  /\  ph ) ,. ( x  =  y  /\  ph )  ->.  [ y  /  x ] ph ).
189, 17exinst 28662 . . 3  |-  ( E. x ( x  =  y  /\  ph )  ->  [ y  /  x ] ph )
198, 18pm3.2i 442 . 2  |-  ( ( [ y  /  x ] ph  ->  E. x
( x  =  y  /\  ph ) )  /\  ( E. x
( x  =  y  /\  ph )  ->  [ y  /  x ] ph ) )
20 bi3 180 . . 3  |-  ( ( [ y  /  x ] ph  ->  E. x
( x  =  y  /\  ph ) )  ->  ( ( E. x ( x  =  y  /\  ph )  ->  [ y  /  x ] ph )  ->  ( [ y  /  x ] ph  <->  E. x ( x  =  y  /\  ph ) ) ) )
2120imp 419 . 2  |-  ( ( ( [ y  /  x ] ph  ->  E. x
( x  =  y  /\  ph ) )  /\  ( E. x
( x  =  y  /\  ph )  ->  [ y  /  x ] ph ) )  -> 
( [ y  /  x ] ph  <->  E. x
( x  =  y  /\  ph ) ) )
2219, 21e0_ 28821 1  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652   [wsb 1658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-vd1 28598  df-vd2 28607
  Copyright terms: Public domain W3C validator