MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb6rf Unicode version

Theorem sb6rf 2104
Description: Reversed substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sb5rf.1  |-  F/ y
ph
Assertion
Ref Expression
sb6rf  |-  ( ph  <->  A. y ( y  =  x  ->  [ y  /  x ] ph )
)

Proof of Theorem sb6rf
StepHypRef Expression
1 sb5rf.1 . . 3  |-  F/ y
ph
2 sbequ1 1930 . . . . 5  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
32equcoms 1686 . . . 4  |-  ( y  =  x  ->  ( ph  ->  [ y  /  x ] ph ) )
43com12 27 . . 3  |-  ( ph  ->  ( y  =  x  ->  [ y  /  x ] ph ) )
51, 4alrimi 1771 . 2  |-  ( ph  ->  A. y ( y  =  x  ->  [ y  /  x ] ph ) )
6 sb2 2036 . . 3  |-  ( A. y ( y  =  x  ->  [ y  /  x ] ph )  ->  [ x  /  y ] [ y  /  x ] ph )
71sbid2 2097 . . 3  |-  ( [ x  /  y ] [ y  /  x ] ph  <->  ph )
86, 7sylib 188 . 2  |-  ( A. y ( y  =  x  ->  [ y  /  x ] ph )  ->  ph )
95, 8impbii 180 1  |-  ( ph  <->  A. y ( y  =  x  ->  [ y  /  x ] ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1545   F/wnf 1549   [wsb 1653
This theorem is referenced by:  2sb6rf  2131  eu1  2238
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654
  Copyright terms: Public domain W3C validator