Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb6rf Structured version   Unicode version

Theorem sb6rf 2167
 Description: Reversed substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sb5rf.1
Assertion
Ref Expression
sb6rf

Proof of Theorem sb6rf
StepHypRef Expression
1 sb5rf.1 . . 3
2 sbequ1 1943 . . . . 5
32equcoms 1693 . . . 4
43com12 29 . . 3
51, 4alrimi 1781 . 2
6 sb2 2090 . . 3
71sbid2 2159 . . 3
86, 7sylib 189 . 2
95, 8impbii 181 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549  wnf 1553  wsb 1658 This theorem is referenced by:  2sb6rf  2195  eu1  2302 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659
 Copyright terms: Public domain W3C validator