Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb7f Structured version   Unicode version

Theorem sb7f 2198
 Description: This version of dfsb7 2200 does not require that and be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1627 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 1660 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sb7f.1
Assertion
Ref Expression
sb7f
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem sb7f
StepHypRef Expression
1 sb7f.1 . . . 4
21sb5f 2125 . . 3
32sbbii 1666 . 2
41sbco2 2163 . 2
5 sb5 2178 . 2
63, 4, 53bitr3i 268 1
 Colors of variables: wff set class Syntax hints:   wb 178   wa 360  wex 1551  wnf 1554   wceq 1653  wsb 1659 This theorem is referenced by:  sb7h  2199  dfsb7  2200 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660
 Copyright terms: Public domain W3C validator