MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8iota Unicode version

Theorem sb8iota 5226
Description: Variable substitution in description binder. Compare sb8eu 2161. (Contributed by NM, 18-Mar-2013.)
Hypothesis
Ref Expression
sb8iota.1  |-  F/ y
ph
Assertion
Ref Expression
sb8iota  |-  ( iota
x ph )  =  ( iota y [ y  /  x ] ph )

Proof of Theorem sb8iota
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1605 . . . . . 6  |-  F/ w
( ph  <->  x  =  z
)
21sb8 2032 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  <->  A. w [ w  /  x ] ( ph  <->  x  =  z ) )
3 sbbi 2011 . . . . . . 7  |-  ( [ w  /  x ]
( ph  <->  x  =  z
)  <->  ( [ w  /  x ] ph  <->  [ w  /  x ] x  =  z ) )
4 sb8iota.1 . . . . . . . . 9  |-  F/ y
ph
54nfsb 2048 . . . . . . . 8  |-  F/ y [ w  /  x ] ph
6 eqsb3 2384 . . . . . . . . 9  |-  ( [ w  /  x ]
x  =  z  <->  w  =  z )
7 nfv 1605 . . . . . . . . 9  |-  F/ y  w  =  z
86, 7nfxfr 1557 . . . . . . . 8  |-  F/ y [ w  /  x ] x  =  z
95, 8nfbi 1772 . . . . . . 7  |-  F/ y ( [ w  /  x ] ph  <->  [ w  /  x ] x  =  z )
103, 9nfxfr 1557 . . . . . 6  |-  F/ y [ w  /  x ] ( ph  <->  x  =  z )
11 nfv 1605 . . . . . 6  |-  F/ w [ y  /  x ] ( ph  <->  x  =  z )
12 sbequ 2000 . . . . . 6  |-  ( w  =  y  ->  ( [ w  /  x ] ( ph  <->  x  =  z )  <->  [ y  /  x ] ( ph  <->  x  =  z ) ) )
1310, 11, 12cbval 1924 . . . . 5  |-  ( A. w [ w  /  x ] ( ph  <->  x  =  z )  <->  A. y [ y  /  x ] ( ph  <->  x  =  z ) )
14 equsb3 2041 . . . . . . 7  |-  ( [ y  /  x ]
x  =  z  <->  y  =  z )
1514sblbis 2012 . . . . . 6  |-  ( [ y  /  x ]
( ph  <->  x  =  z
)  <->  ( [ y  /  x ] ph  <->  y  =  z ) )
1615albii 1553 . . . . 5  |-  ( A. y [ y  /  x ] ( ph  <->  x  =  z )  <->  A. y
( [ y  /  x ] ph  <->  y  =  z ) )
172, 13, 163bitri 262 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  <->  A. y
( [ y  /  x ] ph  <->  y  =  z ) )
1817abbii 2395 . . 3  |-  { z  |  A. x (
ph 
<->  x  =  z ) }  =  { z  |  A. y ( [ y  /  x ] ph  <->  y  =  z ) }
1918unieqi 3837 . 2  |-  U. {
z  |  A. x
( ph  <->  x  =  z
) }  =  U. { z  |  A. y ( [ y  /  x ] ph  <->  y  =  z ) }
20 dfiota2 5220 . 2  |-  ( iota
x ph )  =  U. { z  |  A. x ( ph  <->  x  =  z ) }
21 dfiota2 5220 . 2  |-  ( iota y [ y  /  x ] ph )  = 
U. { z  | 
A. y ( [ y  /  x ] ph 
<->  y  =  z ) }
2219, 20, 213eqtr4i 2313 1  |-  ( iota
x ph )  =  ( iota y [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 176   A.wal 1527   F/wnf 1531    = wceq 1623   [wsb 1629   {cab 2269   U.cuni 3827   iotacio 5217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-sn 3646  df-uni 3828  df-iota 5219
  Copyright terms: Public domain W3C validator