MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbab Structured version   Unicode version

Theorem sbab 2560
Description: The right-hand side of the second equality is a way of representing proper substitution of  y for  x into a class variable. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
sbab  |-  ( x  =  y  ->  A  =  { z  |  [
y  /  x ]
z  e.  A }
)
Distinct variable groups:    z, A    x, z    y, z
Allowed substitution hints:    A( x, y)

Proof of Theorem sbab
StepHypRef Expression
1 sbequ12 1945 . 2  |-  ( x  =  y  ->  (
z  e.  A  <->  [ y  /  x ] z  e.  A ) )
21abbi2dv 2553 1  |-  ( x  =  y  ->  A  =  { z  |  [
y  /  x ]
z  e.  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653   [wsb 1659    e. wcel 1726   {cab 2424
This theorem is referenced by:  sbcel12g  3268  sbceqg  3269
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434
  Copyright terms: Public domain W3C validator