MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbab Unicode version

Theorem sbab 2405
Description: The right-hand side of the second equality is a way of representing proper substitution of  y for  x into a class variable. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
sbab  |-  ( x  =  y  ->  A  =  { z  |  [
y  /  x ]
z  e.  A }
)
Distinct variable groups:    z, A    x, z    y, z
Allowed substitution hints:    A( x, y)

Proof of Theorem sbab
StepHypRef Expression
1 sbequ12 1860 . 2  |-  ( x  =  y  ->  (
z  e.  A  <->  [ y  /  x ] z  e.  A ) )
21abbi2dv 2398 1  |-  ( x  =  y  ->  A  =  { z  |  [
y  /  x ]
z  e.  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623   [wsb 1629    e. wcel 1684   {cab 2269
This theorem is referenced by:  sbcel12g  3096  sbceqg  3097
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279
  Copyright terms: Public domain W3C validator