MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbal2 Structured version   Unicode version

Theorem sbal2 2211
Description: Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
sbal2  |-  ( -. 
A. x  x  =  y  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Distinct variable groups:    y, z    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbal2
StepHypRef Expression
1 alcom 1752 . . 3  |-  ( A. y A. x ( y  =  z  ->  ph )  <->  A. x A. y ( y  =  z  ->  ph ) )
2 nfnae 2044 . . . 4  |-  F/ y  -.  A. x  x  =  y
3 nfnae 2044 . . . . . 6  |-  F/ x  -.  A. x  x  =  y
4 dveeq1 2021 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
53, 4nfd 1782 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  F/ x  y  =  z )
6 19.21t 1813 . . . . 5  |-  ( F/ x  y  =  z  ->  ( A. x
( y  =  z  ->  ph )  <->  ( y  =  z  ->  A. x ph ) ) )
75, 6syl 16 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( A. x ( y  =  z  ->  ph )  <->  ( y  =  z  ->  A. x ph ) ) )
82, 7albid 1788 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( A. y A. x ( y  =  z  ->  ph )  <->  A. y ( y  =  z  ->  A. x ph ) ) )
91, 8syl5rbbr 252 . 2  |-  ( -. 
A. x  x  =  y  ->  ( A. y ( y  =  z  ->  A. x ph )  <->  A. x A. y
( y  =  z  ->  ph ) ) )
10 sb6 2175 . 2  |-  ( [ z  /  y ] A. x ph  <->  A. y
( y  =  z  ->  A. x ph )
)
11 sb6 2175 . . 3  |-  ( [ z  /  y ]
ph 
<-> 
A. y ( y  =  z  ->  ph )
)
1211albii 1575 . 2  |-  ( A. x [ z  /  y ] ph  <->  A. x A. y
( y  =  z  ->  ph ) )
139, 10, 123bitr4g 280 1  |-  ( -. 
A. x  x  =  y  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177   A.wal 1549   F/wnf 1553   [wsb 1658
This theorem is referenced by:  2sb5ndVD  29022  2sb5ndALT  29044
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659
  Copyright terms: Public domain W3C validator