MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbalv Structured version   Unicode version

Theorem sbalv 2205
Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sbalv.1  |-  ( [ y  /  x ] ph 
<->  ps )
Assertion
Ref Expression
sbalv  |-  ( [ y  /  x ] A. z ph  <->  A. z ps )
Distinct variable groups:    x, z    y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem sbalv
StepHypRef Expression
1 sbal 2203 . 2  |-  ( [ y  /  x ] A. z ph  <->  A. z [ y  /  x ] ph )
2 sbalv.1 . . 3  |-  ( [ y  /  x ] ph 
<->  ps )
32albii 1575 . 2  |-  ( A. z [ y  /  x ] ph  <->  A. z ps )
41, 3bitri 241 1  |-  ( [ y  /  x ] A. z ph  <->  A. z ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 177   A.wal 1549   [wsb 1658
This theorem is referenced by:  sbmo  2310  sbabel  2597  mo5f  23964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659
  Copyright terms: Public domain W3C validator