Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbalv Structured version   Unicode version

Theorem sbalv 2205
 Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sbalv.1
Assertion
Ref Expression
sbalv
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem sbalv
StepHypRef Expression
1 sbal 2203 . 2
2 sbalv.1 . . 3
32albii 1575 . 2
41, 3bitri 241 1
 Colors of variables: wff set class Syntax hints:   wb 177  wal 1549  wsb 1658 This theorem is referenced by:  sbmo  2310  sbabel  2597  mo5f  23964 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659
 Copyright terms: Public domain W3C validator