Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbaniota Unicode version

Theorem sbaniota 27635
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
sbaniota  |-  ( E! x ph  ->  ( E. x ( ph  /\  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )

Proof of Theorem sbaniota
StepHypRef Expression
1 eupickbi 2209 . 2  |-  ( E! x ph  ->  ( E. x ( ph  /\  ps )  <->  A. x ( ph  ->  ps ) ) )
2 sbiota1 27634 . 2  |-  ( E! x ph  ->  ( A. x ( ph  ->  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )
31, 2bitrd 244 1  |-  ( E! x ph  ->  ( E. x ( ph  /\  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528   E!weu 2143   [.wsbc 2991   iotacio 5217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790  df-sbc 2992  df-un 3157  df-sn 3646  df-pr 3647  df-uni 3828  df-iota 5219
  Copyright terms: Public domain W3C validator