Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2iedv Structured version   Unicode version

Theorem sbc2iedv 3221
 Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
Hypotheses
Ref Expression
sbc2iedv.1
sbc2iedv.2
sbc2iedv.3
Assertion
Ref Expression
sbc2iedv
Distinct variable groups:   ,,   ,   ,,   ,,
Allowed substitution hints:   (,)   ()

Proof of Theorem sbc2iedv
StepHypRef Expression
1 sbc2iedv.1 . . 3
21a1i 11 . 2
3 sbc2iedv.2 . . . 4
43a1i 11 . . 3
5 sbc2iedv.3 . . . 4
65impl 604 . . 3
74, 6sbcied 3189 . 2
82, 7sbcied 3189 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  cvv 2948  wsbc 3153 This theorem is referenced by:  dfoprab3  6395  sdclem1  26401 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154
 Copyright terms: Public domain W3C validator