Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbc3org Structured version   Unicode version

Theorem sbc3org 28690
Description: sbcorg 3208 with a 3-disjuncts. This proof is sbc3orgVD 29037 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbc3org  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  \/  ps  \/  ch )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps  \/  [. A  /  x ]. ch ) ) )

Proof of Theorem sbc3org
StepHypRef Expression
1 sbcorg 3208 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ( ph  \/  ps )  \/  ch ) 
<->  ( [. A  /  x ]. ( ph  \/  ps )  \/  [. A  /  x ]. ch )
) )
2 df-3or 938 . . . . 5  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/  ch ) )
32bicomi 195 . . . 4  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ps  \/  ch ) )
43sbcbiiOLD 3219 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ( ph  \/  ps )  \/  ch ) 
<-> 
[. A  /  x ]. ( ph  \/  ps  \/  ch ) ) )
5 sbcorg 3208 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  \/  ps ) 
<->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) )
65orbi1d 685 . . 3  |-  ( A  e.  V  ->  (
( [. A  /  x ]. ( ph  \/  ps )  \/  [. A  /  x ]. ch )  <->  ( ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps )  \/  [. A  /  x ]. ch ) ) )
71, 4, 63bitr3d 276 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  \/  ps  \/  ch )  <->  ( ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps )  \/  [. A  /  x ]. ch ) ) )
8 df-3or 938 . 2  |-  ( (
[. A  /  x ]. ph  \/  [. A  /  x ]. ps  \/  [. A  /  x ]. ch )  <->  ( ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps )  \/  [. A  /  x ]. ch )
)
97, 8syl6bbr 256 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  \/  ps  \/  ch )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps  \/  [. A  /  x ]. ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    \/ w3o 936    e. wcel 1726   [.wsbc 3163
This theorem is referenced by:  sbcoreleleq  28693  sbcoreleleqVD  29045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-sbc 3164
  Copyright terms: Public domain W3C validator