Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc6 Structured version   Unicode version

Theorem sbc6 3179
 Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
Hypothesis
Ref Expression
sbc6.1
Assertion
Ref Expression
sbc6
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem sbc6
StepHypRef Expression
1 sbc6.1 . 2
2 sbc6g 3178 . 2
31, 2ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549   wceq 1652   wcel 1725  cvv 2948  wsbc 3153 This theorem is referenced by:  intab  4072  2sbc6g  27573 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154
 Copyright terms: Public domain W3C validator