Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc6g Structured version   Unicode version

Theorem sbc6g 3178
 Description: An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
sbc6g
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem sbc6g
StepHypRef Expression
1 nfe1 1747 . . 3
2 ceqex 3058 . . 3
31, 2ceqsalg 2972 . 2
4 sbc5 3177 . 2
53, 4syl6rbbr 256 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549  wex 1550   wceq 1652   wcel 1725  wsbc 3153 This theorem is referenced by:  sbc6  3179  sbciegft  3183  ralsns  3836  fz1sbc  11116  pm14.122a  27590 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154
 Copyright terms: Public domain W3C validator