Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc7 Structured version   Unicode version

Theorem sbc7 3180
 Description: An equivalence for class substitution in the spirit of df-clab 2422. Note that and don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbc7
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem sbc7
StepHypRef Expression
1 sbcco 3175 . 2
2 sbc5 3177 . 2
31, 2bitr3i 243 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359  wex 1550   wceq 1652  wsbc 3153 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154
 Copyright terms: Public domain W3C validator