Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcang Structured version   Unicode version

Theorem sbcang 3204
 Description: Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcang

Proof of Theorem sbcang
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3164 . 2
2 dfsbcq2 3164 . . 3
3 dfsbcq2 3164 . . 3
42, 3anbi12d 692 . 2
5 sban 2139 . 2
61, 4, 5vtoclbg 3012 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652  wsb 1658   wcel 1725  wsbc 3161 This theorem is referenced by:  sbcabel  3238  csbunig  4023  csbxpg  4905  onfrALTlem5  28628  csbingVD  28996  onfrALTlem5VD  28997  onfrALTlem4VD  28998  csbxpgVD  29006  csbunigVD  29010 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-sbc 3162
 Copyright terms: Public domain W3C validator