MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcang Unicode version

Theorem sbcang 3068
Description: Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcang  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  /\  ps ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
) )

Proof of Theorem sbcang
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3028 . 2  |-  ( y  =  A  ->  ( [ y  /  x ] ( ph  /\  ps )  <->  [. A  /  x ]. ( ph  /\  ps ) ) )
2 dfsbcq2 3028 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
3 dfsbcq2 3028 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ps  <->  [. A  /  x ]. ps ) )
42, 3anbi12d 691 . 2  |-  ( y  =  A  ->  (
( [ y  /  x ] ph  /\  [
y  /  x ] ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) ) )
5 sban 2041 . 2  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
61, 4, 5vtoclbg 2878 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  /\  ps ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633   [wsb 1639    e. wcel 1701   [.wsbc 3025
This theorem is referenced by:  sbcabel  3102  csbunig  3872  csbxpg  4753  onfrALTlem5  27801  csbingVD  28171  onfrALTlem5VD  28172  onfrALTlem4VD  28173  csbxpgVD  28181  csbunigVD  28185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-v 2824  df-sbc 3026
  Copyright terms: Public domain W3C validator