Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbiiOLD Unicode version

Theorem sbcbiiOLD 3060
 Description: Formula-building inference rule for class substitution. (Contributed by NM, 11-Nov-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbcbii.1
Assertion
Ref Expression
sbcbiiOLD

Proof of Theorem sbcbiiOLD
StepHypRef Expression
1 sbcbii.1 . . 3
21sbcbii 3059 . 2
32a1i 10 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wcel 1696  wsbc 3004 This theorem is referenced by:  isibg2  26213  2sbcrex  26967  sbc3org  28594  trsbc  28603  sbcssOLD  28605  eqsbc3rVD  28932  bnj89  29063  bnj524  29082  bnj984  29300  bnj1452  29398 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-sbc 3005
 Copyright terms: Public domain W3C validator