MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcco2 Unicode version

Theorem sbcco2 3027
Description: A composition law for class substitution. Importantly,  x may occur free in the class expression substituted for  A. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
sbcco2.1  |-  ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
sbcco2  |-  ( [. x  /  y ]. [. B  /  x ]. ph  <->  [. A  /  x ]. ph )
Distinct variable groups:    x, y    ph, y    y, A
Allowed substitution hints:    ph( x)    A( x)    B( x, y)

Proof of Theorem sbcco2
StepHypRef Expression
1 sbsbc 3008 . 2  |-  ( [ x  /  y ]
[. B  /  x ]. ph  <->  [. x  /  y ]. [. B  /  x ]. ph )
2 nfv 1609 . . 3  |-  F/ y
[. A  /  x ]. ph
3 sbcco2.1 . . . . 5  |-  ( x  =  y  ->  A  =  B )
43eqcoms 2299 . . . 4  |-  ( y  =  x  ->  A  =  B )
5 dfsbcq 3006 . . . . 5  |-  ( A  =  B  ->  ( [. A  /  x ]. ph  <->  [. B  /  x ]. ph ) )
65bicomd 192 . . . 4  |-  ( A  =  B  ->  ( [. B  /  x ]. ph  <->  [. A  /  x ]. ph ) )
74, 6syl 15 . . 3  |-  ( y  =  x  ->  ( [. B  /  x ]. ph  <->  [. A  /  x ]. ph ) )
82, 7sbie 1991 . 2  |-  ( [ x  /  y ]
[. B  /  x ]. ph  <->  [. A  /  x ]. ph )
91, 8bitr3i 242 1  |-  ( [. x  /  y ]. [. B  /  x ]. ph  <->  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632   [wsb 1638   [.wsbc 3004
This theorem is referenced by:  tfinds2  4670
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-sbc 3005
  Copyright terms: Public domain W3C validator