Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbccomieg Structured version   Unicode version

Theorem sbccomieg 26849
Description: Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
sbccomieg.1  |-  ( a  =  A  ->  B  =  C )
Assertion
Ref Expression
sbccomieg  |-  ( [. A  /  a ]. [. B  /  b ]. ph  <->  [. C  / 
b ]. [. A  / 
a ]. ph )
Distinct variable groups:    A, a,
b    C, a
Allowed substitution hints:    ph( a, b)    B( a, b)    C( b)

Proof of Theorem sbccomieg
StepHypRef Expression
1 sbcex 3170 . 2  |-  ( [. A  /  a ]. [. B  /  b ]. ph  ->  A  e.  _V )
2 spesbc 3242 . . 3  |-  ( [. C  /  b ]. [. A  /  a ]. ph  ->  E. b [. A  / 
a ]. ph )
3 sbcex 3170 . . . 4  |-  ( [. A  /  a ]. ph  ->  A  e.  _V )
43exlimiv 1644 . . 3  |-  ( E. b [. A  / 
a ]. ph  ->  A  e.  _V )
52, 4syl 16 . 2  |-  ( [. C  /  b ]. [. A  /  a ]. ph  ->  A  e.  _V )
6 nfcv 2572 . . . 4  |-  F/_ a C
7 nfsbc1v 3180 . . . 4  |-  F/ a
[. A  /  a ]. ph
86, 7nfsbc 3182 . . 3  |-  F/ a
[. C  /  b ]. [. A  /  a ]. ph
9 sbccomieg.1 . . . . 5  |-  ( a  =  A  ->  B  =  C )
10 dfsbcq 3163 . . . . 5  |-  ( B  =  C  ->  ( [. B  /  b ]. ph  <->  [. C  /  b ]. ph ) )
119, 10syl 16 . . . 4  |-  ( a  =  A  ->  ( [. B  /  b ]. ph  <->  [. C  /  b ]. ph ) )
12 sbceq1a 3171 . . . . 5  |-  ( a  =  A  ->  ( ph 
<-> 
[. A  /  a ]. ph ) )
1312sbcbidv 3215 . . . 4  |-  ( a  =  A  ->  ( [. C  /  b ]. ph  <->  [. C  /  b ]. [. A  /  a ]. ph ) )
1411, 13bitrd 245 . . 3  |-  ( a  =  A  ->  ( [. B  /  b ]. ph  <->  [. C  /  b ]. [. A  /  a ]. ph ) )
158, 14sbciegf 3192 . 2  |-  ( A  e.  _V  ->  ( [. A  /  a ]. [. B  /  b ]. ph  <->  [. C  /  b ]. [. A  /  a ]. ph ) )
161, 5, 15pm5.21nii 343 1  |-  ( [. A  /  a ]. [. B  /  b ]. ph  <->  [. C  / 
b ]. [. A  / 
a ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   E.wex 1550    = wceq 1652    e. wcel 1725   _Vcvv 2956   [.wsbc 3161
This theorem is referenced by:  sbccomiegOLD  26853  2rexfrabdioph  26856  3rexfrabdioph  26857  4rexfrabdioph  26858  6rexfrabdioph  26859  7rexfrabdioph  26860
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-v 2958  df-sbc 3162
  Copyright terms: Public domain W3C validator