Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbccomiegOLD Unicode version

Theorem sbccomiegOLD 26874
 Description: Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypothesis
Ref Expression
sbccomiegOLD.1
Assertion
Ref Expression
sbccomiegOLD
Distinct variable groups:   ,,   ,
Allowed substitution hints:   (,)   (,)   ()   (,)   (,)

Proof of Theorem sbccomiegOLD
StepHypRef Expression
1 sbccomiegOLD.1 . . 3
21sbccomieg 26870 . 2
32a1i 10 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   wceq 1623   wcel 1684  wsbc 2991 This theorem is referenced by:  2rexfrabdioph  26877  3rexfrabdioph  26878  4rexfrabdioph  26879  6rexfrabdioph  26880  7rexfrabdioph  26881 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790  df-sbc 2992
 Copyright terms: Public domain W3C validator