Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb2g Structured version   Unicode version

Theorem sbccsb2g 3280
 Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
sbccsb2g

Proof of Theorem sbccsb2g
StepHypRef Expression
1 abid 2424 . . 3
21sbcbii 3216 . 2
3 sbcel12g 3266 . . 3
4 csbvarg 3278 . . . 4
54eleq1d 2502 . . 3
63, 5bitrd 245 . 2
72, 6syl5bbr 251 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wcel 1725  cab 2422  wsbc 3161  csb 3251 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-sbc 3162  df-csb 3252
 Copyright terms: Public domain W3C validator