Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1g Structured version   Unicode version

Theorem sbcel1g 3270
 Description: Move proper substitution in and out of a membership relation. Note that the scope of is the wff , whereas the scope of is the class . (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
sbcel1g
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem sbcel1g
StepHypRef Expression
1 sbcel12g 3266 . 2
2 csbconstg 3265 . . 3
32eleq2d 2503 . 2
41, 3bitrd 245 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wcel 1725  wsbc 3161  csb 3251 This theorem is referenced by:  rspcsbela  3308  wunnat  14153  catcfuccl  14264  esumpfinvalf  24466  measiuns  24571  cdlemk35s  31734 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-sbc 3162  df-csb 3252
 Copyright terms: Public domain W3C validator