MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1gv Unicode version

Theorem sbcel1gv 3184
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcel1gv  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  e.  B  <->  A  e.  B ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem sbcel1gv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3128 . 2  |-  ( y  =  A  ->  ( [ y  /  x ] x  e.  B  <->  [. A  /  x ]. x  e.  B )
)
2 eleq1 2468 . 2  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
3 clelsb3 2510 . 2  |-  ( [ y  /  x ]
x  e.  B  <->  y  e.  B )
41, 2, 3vtoclbg 2976 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  e.  B  <->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   [wsb 1655    e. wcel 1721   [.wsbc 3125
This theorem is referenced by:  tfinds2  4806  filuni  17874  sbcoreleleq  28334  onfrALTlem4  28344  sbcoreleleqVD  28684  onfrALTlem4VD  28711  bnj110  28939
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-v 2922  df-sbc 3126
  Copyright terms: Public domain W3C validator