MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel2gv Unicode version

Theorem sbcel2gv 3064
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcel2gv  |-  ( B  e.  V  ->  ( [. B  /  x ]. A  e.  x  <->  A  e.  B ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem sbcel2gv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3007 . 2  |-  ( y  =  B  ->  ( [ y  /  x ] A  e.  x  <->  [. B  /  x ]. A  e.  x )
)
2 eleq2 2357 . 2  |-  ( y  =  B  ->  ( A  e.  y  <->  A  e.  B ) )
3 nfv 1609 . . 3  |-  F/ x  A  e.  y
4 eleq2 2357 . . 3  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
53, 4sbie 1991 . 2  |-  ( [ y  /  x ] A  e.  x  <->  A  e.  y )
61, 2, 5vtoclbg 2857 1  |-  ( B  e.  V  ->  ( [. B  /  x ]. A  e.  x  <->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   [wsb 1638    e. wcel 1696   [.wsbc 3004
This theorem is referenced by:  csbvarg  3121  sbcoreleleq  28597  trsbc  28603  onfrALTlem5  28606  sbcoreleleqVD  28951  trsbcVD  28969  onfrALTlem5VD  28977  bnj92  29210  bnj539  29239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-sbc 3005
  Copyright terms: Public domain W3C validator