MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq1d Unicode version

Theorem sbceq1d 2996
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
sbceq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sbceq1d  |-  ( ph  ->  ( [. A  /  x ]. ph  <->  [. B  /  x ]. ph ) )

Proof of Theorem sbceq1d
StepHypRef Expression
1 sbceq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 dfsbcq 2993 . 2  |-  ( A  =  B  ->  ( [. A  /  x ]. ph  <->  [. B  /  x ]. ph ) )
31, 2syl 15 1  |-  ( ph  ->  ( [. A  /  x ]. ph  <->  [. B  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623   [.wsbc 2991
This theorem is referenced by:  sbceq1dd  2997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-cleq 2276  df-clel 2279  df-sbc 2992
  Copyright terms: Public domain W3C validator