Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcex Structured version   Unicode version

Theorem sbcex 3172
 Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcex

Proof of Theorem sbcex
StepHypRef Expression
1 df-sbc 3164 . 2
2 elex 2966 . 2
31, 2sylbi 189 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1726  cab 2424  cvv 2958  wsbc 3163 This theorem is referenced by:  sbcco  3185  sbc5  3187  sbcan  3205  sbcor  3207  sbcal  3210  sbcex2  3212  spesbc  3244  opelopabsb  4468  sbccomieg  26863 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-v 2960  df-sbc 3164
 Copyright terms: Public domain W3C validator