Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcexg Structured version   Unicode version

Theorem sbcexg 3203
 Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcexg
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()   (,)

Proof of Theorem sbcexg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3156 . 2
2 dfsbcq2 3156 . . 3
32exbidv 1636 . 2
4 sbex 2204 . 2
51, 3, 4vtoclbg 3004 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wex 1550   wceq 1652  wsb 1658   wcel 1725  wsbc 3153 This theorem is referenced by:  sbcabel  3230  csbunig  4015  csbxpg  4897  csbrng  5106  csbdmg  27949  onfrALTlem5  28565  onfrALTlem5VD  28934  csbxpgVD  28943  csbrngVD  28945  csbunigVD  28947 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154
 Copyright terms: Public domain W3C validator