Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcfun Structured version   Unicode version

Theorem sbcfun 27963
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcfun  |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )

Proof of Theorem sbcfun
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcan 3203 . . 3  |-  ( [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  -> 
z  =  y ) )  <->  ( [. A  /  x ]. Rel  F  /\  [. A  /  x ]. A. w E. y A. z ( w F z  ->  z  =  y ) ) )
2 sbcrel 27957 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. Rel  F  <->  Rel  [_ A  /  x ]_ F ) )
3 sbcal 3208 . . . . 5  |-  ( [. A  /  x ]. A. w E. y A. z
( w F z  ->  z  =  y )  <->  A. w [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y ) )
4 sbcex2 3210 . . . . . . 7  |-  ( [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y )  <->  E. y [. A  /  x ]. A. z ( w F z  ->  z  =  y ) )
5 sbcal 3208 . . . . . . . . 9  |-  ( [. A  /  x ]. A. z ( w F z  ->  z  =  y )  <->  A. z [. A  /  x ]. ( w F z  ->  z  =  y ) )
6 sbcimg 3202 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( w F z  ->  z  =  y )  <->  ( [. A  /  x ]. w F z  ->  [. A  /  x ]. z  =  y ) ) )
7 sbcbrg 4261 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [. A  /  x ]. w F z  <->  [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ z
) )
8 csbconstg 3265 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ w  =  w )
9 csbconstg 3265 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ z  =  z )
108, 9breq12d 4225 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ z  <->  w [_ A  /  x ]_ F
z ) )
117, 10bitrd 245 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. w F z  <->  w [_ A  /  x ]_ F
z ) )
12 sbcg 3226 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  =  y  <->  z  =  y ) )
1311, 12imbi12d 312 . . . . . . . . . . 11  |-  ( A  e.  V  ->  (
( [. A  /  x ]. w F z  ->  [. A  /  x ]. z  =  y
)  <->  ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
146, 13bitrd 245 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( w F z  ->  z  =  y )  <->  ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
1514albidv 1635 . . . . . . . . 9  |-  ( A  e.  V  ->  ( A. z [. A  /  x ]. ( w F z  ->  z  =  y )  <->  A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
165, 15syl5bb 249 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. z ( w F z  ->  z  =  y )  <->  A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
1716exbidv 1636 . . . . . . 7  |-  ( A  e.  V  ->  ( E. y [. A  /  x ]. A. z ( w F z  -> 
z  =  y )  <->  E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
184, 17syl5bb 249 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y A. z
( w F z  ->  z  =  y )  <->  E. y A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
1918albidv 1635 . . . . 5  |-  ( A  e.  V  ->  ( A. w [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y )  <->  A. w E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
203, 19syl5bb 249 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. w E. y A. z ( w F z  ->  z  =  y )  <->  A. w E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
212, 20anbi12d 692 . . 3  |-  ( A  e.  V  ->  (
( [. A  /  x ]. Rel  F  /\  [. A  /  x ]. A. w E. y A. z ( w F z  -> 
z  =  y ) )  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) ) )
221, 21syl5bb 249 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) )  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w
[_ A  /  x ]_ F z  ->  z  =  y ) ) ) )
23 dffun3 5465 . . 3  |-  ( Fun 
F  <->  ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) ) )
2423sbcbii 3216 . 2  |-  ( [. A  /  x ]. Fun  F  <->  [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) ) )
25 dffun3 5465 . 2  |-  ( Fun  [_ A  /  x ]_ F  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
2622, 24, 253bitr4g 280 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550    e. wcel 1725   [.wsbc 3161   [_csb 3251   class class class wbr 4212   Rel wrel 4883   Fun wfun 5448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-id 4498  df-rel 4885  df-cnv 4886  df-co 4887  df-fun 5456
  Copyright terms: Public domain W3C validator