MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcg Unicode version

Theorem sbcg 3056
Description: Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3054. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
sbcg  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem sbcg
StepHypRef Expression
1 nfv 1605 . 2  |-  F/ x ph
21sbcgf 3054 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    e. wcel 1684   [.wsbc 2991
This theorem is referenced by:  sbcabel  3068  csbunig  3835  csbxpg  4716  csbxpgVD  28670  csbunigVD  28674  bnj89  28747  bnj525  28767  cdlemk40  31106  cdlemkid3N  31122  cdlemkid4  31123
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992
  Copyright terms: Public domain W3C validator