MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciedf Structured version   Unicode version

Theorem sbciedf 3196
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcied.1  |-  ( ph  ->  A  e.  V )
sbcied.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
sbciedf.3  |-  F/ x ph
sbciedf.4  |-  ( ph  ->  F/ x ch )
Assertion
Ref Expression
sbciedf  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    ch( x)    V( x)

Proof of Theorem sbciedf
StepHypRef Expression
1 sbcied.1 . 2  |-  ( ph  ->  A  e.  V )
2 sbciedf.4 . 2  |-  ( ph  ->  F/ x ch )
3 sbciedf.3 . . 3  |-  F/ x ph
4 sbcied.2 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
54ex 424 . . 3  |-  ( ph  ->  ( x  =  A  ->  ( ps  <->  ch )
) )
63, 5alrimi 1781 . 2  |-  ( ph  ->  A. x ( x  =  A  ->  ( ps 
<->  ch ) ) )
7 sbciegft 3191 . 2  |-  ( ( A  e.  V  /\  F/ x ch  /\  A. x ( x  =  A  ->  ( ps  <->  ch ) ) )  -> 
( [. A  /  x ]. ps  <->  ch ) )
81, 2, 6, 7syl3anc 1184 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   F/wnf 1553    = wceq 1652    e. wcel 1725   [.wsbc 3161
This theorem is referenced by:  sbcied  3197  sbc2iegf  3227  csbiebt  3287  sbcnestgf  3298  ovmpt2dxf  6199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-sbc 3162
  Copyright terms: Public domain W3C validator