Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciegf Structured version   Unicode version

Theorem sbciegf 3194
 Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
sbciegf.1
sbciegf.2
Assertion
Ref Expression
sbciegf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem sbciegf
StepHypRef Expression
1 sbciegf.1 . 2
2 sbciegf.2 . . 3
32ax-gen 1556 . 2
4 sbciegft 3193 . 2
51, 3, 4mp3an23 1272 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550  wnf 1554   wceq 1653   wcel 1726  wsbc 3163 This theorem is referenced by:  sbcieg  3195  opelopabf  4481  eqerlem  6939  sbccomieg  26851  aomclem6  27136  fveqsb  27634  opelopabgf  28074  bnj919  29198  bnj1464  29277  bnj1123  29417  bnj1373  29461 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-sbc 3164
 Copyright terms: Public domain W3C validator