MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciegf Unicode version

Theorem sbciegf 3022
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
sbciegf.1  |-  F/ x ps
sbciegf.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
sbciegf  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem sbciegf
StepHypRef Expression
1 sbciegf.1 . 2  |-  F/ x ps
2 sbciegf.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32ax-gen 1533 . 2  |-  A. x
( x  =  A  ->  ( ph  <->  ps )
)
4 sbciegft 3021 . 2  |-  ( ( A  e.  V  /\  F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) ) )  -> 
( [. A  /  x ]. ph  <->  ps ) )
51, 3, 4mp3an23 1269 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527   F/wnf 1531    = wceq 1623    e. wcel 1684   [.wsbc 2991
This theorem is referenced by:  sbcieg  3023  opelopabf  4289  eqerlem  6692  sbcss12g  23141  sbccomieg  26870  aomclem6  27156  fveqsb  27656  bnj919  28797  bnj1464  28876  bnj1123  29016  bnj1373  29060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992
  Copyright terms: Public domain W3C validator