Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcim2gVD Structured version   Unicode version

Theorem sbcim2gVD 29061
Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg 3204. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcim2g 28697 is sbcim2gVD 29061 without virtual deductions and was automatically derived from sbcim2gVD 29061.
 1:: 2:: 3:1,2: 4:1: 5:3,4: 6:5: 7:: 8:4,7: 9:1: 10:8,9: 11:10: 12:6,11: qed:12:
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcim2gVD

Proof of Theorem sbcim2gVD
StepHypRef Expression
1 idn1 28739 . . . . . 6
2 idn2 28788 . . . . . 6
3 sbcimg 3204 . . . . . . 7
43biimpd 200 . . . . . 6
51, 2, 4e12 28910 . . . . 5
6 sbcimg 3204 . . . . . 6
71, 6e1_ 28802 . . . . 5
8 imbi2 316 . . . . . 6
98biimpcd 217 . . . . 5
105, 7, 9e21 28916 . . . 4
1110in2 28780 . . 3
12 idn2 28788 . . . . . 6
13 bi2 191 . . . . . . 7
1413imim2d 51 . . . . . 6
157, 12, 14e12 28910 . . . . 5
161, 3e1_ 28802 . . . . 5
17 bi2 191 . . . . . 6
1817com12 30 . . . . 5
1915, 16, 18e21 28916 . . . 4
2019in2 28780 . . 3
21 bi3 181 . . 3
2211, 20, 21e11 28863 . 2
2322in1 28736 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wcel 1726  wsbc 3163 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-sbc 3164  df-vd1 28735  df-vd2 28744
 Copyright terms: Public domain W3C validator