Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcnestg Structured version   Unicode version

Theorem sbcnestg 3302
 Description: Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
sbcnestg
Distinct variable group:   ,
Allowed substitution hints:   ()   (,)   (,)   (,)

Proof of Theorem sbcnestg
StepHypRef Expression
1 nfv 1630 . . 3
21ax-gen 1556 . 2
3 sbcnestgf 3300 . 2
42, 3mpan2 654 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550  wnf 1554   wcel 1726  wsbc 3163  csb 3253 This theorem is referenced by:  sbcco3g  3307 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-sbc 3164  df-csb 3254
 Copyright terms: Public domain W3C validator