MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcng Unicode version

Theorem sbcng 3031
Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcng  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  ph  <->  -.  [. A  /  x ]. ph ) )

Proof of Theorem sbcng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2994 . 2  |-  ( y  =  A  ->  ( [ y  /  x ]  -.  ph  <->  [. A  /  x ].  -.  ph ) )
2 dfsbcq2 2994 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
32notbid 285 . 2  |-  ( y  =  A  ->  ( -.  [ y  /  x ] ph  <->  -.  [. A  /  x ]. ph ) )
4 sbn 2002 . 2  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
51, 3, 4vtoclbg 2844 1  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  ph  <->  -.  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    = wceq 1623   [wsb 1629    e. wcel 1684   [.wsbc 2991
This theorem is referenced by:  sbcrext  3064  sbcnel12g  3098  sbcne12g  3099  difopab  4817  onfrALTlem5  28307  onfrALTlem5VD  28661  bnj23  28744  bnj110  28890  bnj1204  29042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992
  Copyright terms: Public domain W3C validator