MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcopeq1a Unicode version

Theorem sbcopeq1a 6358
Description: Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 3131 that avoids the existential quantifiers of copsexg 4402). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
sbcopeq1a  |-  ( A  =  <. x ,  y
>.  ->  ( [. ( 1st `  A )  /  x ]. [. ( 2nd `  A )  /  y ]. ph  <->  ph ) )

Proof of Theorem sbcopeq1a
StepHypRef Expression
1 vex 2919 . . . . 5  |-  x  e. 
_V
2 vex 2919 . . . . 5  |-  y  e. 
_V
31, 2op2ndd 6317 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 2nd `  A
)  =  y )
43eqcomd 2409 . . 3  |-  ( A  =  <. x ,  y
>.  ->  y  =  ( 2nd `  A ) )
5 sbceq1a 3131 . . 3  |-  ( y  =  ( 2nd `  A
)  ->  ( ph  <->  [. ( 2nd `  A
)  /  y ]. ph ) )
64, 5syl 16 . 2  |-  ( A  =  <. x ,  y
>.  ->  ( ph  <->  [. ( 2nd `  A )  /  y ]. ph ) )
71, 2op1std 6316 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( 1st `  A
)  =  x )
87eqcomd 2409 . . 3  |-  ( A  =  <. x ,  y
>.  ->  x  =  ( 1st `  A ) )
9 sbceq1a 3131 . . 3  |-  ( x  =  ( 1st `  A
)  ->  ( [. ( 2nd `  A )  /  y ]. ph  <->  [. ( 1st `  A )  /  x ]. [. ( 2nd `  A
)  /  y ]. ph ) )
108, 9syl 16 . 2  |-  ( A  =  <. x ,  y
>.  ->  ( [. ( 2nd `  A )  / 
y ]. ph  <->  [. ( 1st `  A )  /  x ]. [. ( 2nd `  A
)  /  y ]. ph ) )
116, 10bitr2d 246 1  |-  ( A  =  <. x ,  y
>.  ->  ( [. ( 1st `  A )  /  x ]. [. ( 2nd `  A )  /  y ]. ph  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649   [.wsbc 3121   <.cop 3777   ` cfv 5413   1stc1st 6306   2ndc2nd 6307
This theorem is referenced by:  dfopab2  6360  dfoprab3s  6361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fv 5421  df-1st 6308  df-2nd 6309
  Copyright terms: Public domain W3C validator