Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcor Structured version   Unicode version

Theorem sbcor 3205
 Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.)
Assertion
Ref Expression
sbcor

Proof of Theorem sbcor
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbcex 3170 . 2
2 sbcex 3170 . . 3
3 sbcex 3170 . . 3
42, 3jaoi 369 . 2
5 dfsbcq2 3164 . . 3
6 dfsbcq2 3164 . . . 4
7 dfsbcq2 3164 . . . 4
86, 7orbi12d 691 . . 3
9 sbor 2138 . . 3
105, 8, 9vtoclbg 3012 . 2
111, 4, 10pm5.21nii 343 1
 Colors of variables: wff set class Syntax hints:   wb 177   wo 358   wceq 1652  wsb 1658   wcel 1725  cvv 2956  wsbc 3161 This theorem is referenced by:  rabrsn  3874 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-sbc 3162
 Copyright terms: Public domain W3C validator