Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcoreleleqVD Unicode version

Theorem sbcoreleleqVD 28635
Description: Virtual deduction proof of sbcoreleleq 28298. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1,?: e1_ 28399  |-  (. A  e.  B  ->.  ( [. A  /  y ]. x  e.  y  <->  x  e.  A ) ).
3:1,?: e1_ 28399  |-  (. A  e.  B  ->.  ( [. A  /  y ]. y  e.  x  <->  A  e.  x ) ).
4:1,?: e1_ 28399  |-  (. A  e.  B  ->.  ( [. A  /  y ]. x  =  y  <->  x  =  A ) ).
5:2,3,4,?: e111 28446  |-  (. A  e.  B  ->.  ( ( x  e.  A  \/  A  e.  x  \/  x  =  A )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ).
6:1,?: e1_ 28399  |-  (. A  e.  B  ->.  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ).
7:5,6: e11 28460  |-  (. A  e.  B  ->.  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) ).
qed:7:  |-  ( A  e.  B  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcoreleleqVD  |-  ( A  e.  B  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    A( x)    B( x, y)

Proof of Theorem sbcoreleleqVD
StepHypRef Expression
1 idn1 28342 . . . . 5  |-  (. A  e.  B  ->.  A  e.  B ).
2 sbcel2gv 3051 . . . . 5  |-  ( A  e.  B  ->  ( [. A  /  y ]. x  e.  y  <->  x  e.  A ) )
31, 2e1_ 28399 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  y ]. x  e.  y  <->  x  e.  A
) ).
4 sbcel1gv 3050 . . . . 5  |-  ( A  e.  B  ->  ( [. A  /  y ]. y  e.  x  <->  A  e.  x ) )
51, 4e1_ 28399 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  y ]. y  e.  x  <->  A  e.  x
) ).
6 eqsbc3r 3048 . . . . 5  |-  ( A  e.  B  ->  ( [. A  /  y ]. x  =  y  <->  x  =  A ) )
71, 6e1_ 28399 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  y ]. x  =  y  <->  x  =  A
) ).
8 3orbi123 28273 . . . . 5  |-  ( ( ( [. A  / 
y ]. x  e.  y  <-> 
x  e.  A )  /\  ( [. A  /  y ]. y  e.  x  <->  A  e.  x
)  /\  ( [. A  /  y ]. x  =  y  <->  x  =  A
) )  ->  (
( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
983impexpbicomi 1358 . . . 4  |-  ( (
[. A  /  y ]. x  e.  y  <->  x  e.  A )  -> 
( ( [. A  /  y ]. y  e.  x  <->  A  e.  x
)  ->  ( ( [. A  /  y ]. x  =  y  <->  x  =  A )  -> 
( ( x  e.  A  \/  A  e.  x  \/  x  =  A )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ) ) )
103, 5, 7, 9e111 28446 . . 3  |-  (. A  e.  B  ->.  ( ( x  e.  A  \/  A  e.  x  \/  x  =  A )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ).
11 sbc3org 28295 . . . 4  |-  ( A  e.  B  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) )
121, 11e1_ 28399 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y )  <-> 
( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y
) ) ).
13 biantr 897 . . . 4  |-  ( ( ( [. A  / 
y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) )  /\  ( ( x  e.  A  \/  A  e.  x  \/  x  =  A )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) )  ->  ( [. A  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y )  <-> 
( x  e.  A  \/  A  e.  x  \/  x  =  A
) ) )
1413expcom 424 . . 3  |-  ( ( ( x  e.  A  \/  A  e.  x  \/  x  =  A
)  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) )  ->  ( ( [. A  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y )  <-> 
( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y
) )  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) ) )
1510, 12, 14e11 28460 . 2  |-  (. A  e.  B  ->.  ( [. A  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y )  <-> 
( x  e.  A  \/  A  e.  x  \/  x  =  A
) ) ).
1615in1 28339 1  |-  ( A  e.  B  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ w3o 933    = wceq 1623    e. wcel 1684   [.wsbc 2991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992  df-vd1 28338
  Copyright terms: Public domain W3C validator